
Software Development vs.
Computer Science
2009 

2 min read • 429 words 

Themes: Programming Human Centered Spiritual

Most developer job applications that I see have a "BS in Computer Science or

equivalent experience" requirement.

During my studies in Computer Science at George Mason University, though

short, I learned a number of things. One of them was what a waste it was to

learn such higher math in my field. I want to develop software, not develop the

most cunning-edge earth-shattering algorithms 

This distinction between software development and algorithm design would later influence
Kenneth's "for humans" philosophy—focusing on practical, usable software rather than
academically impressive but complex solutions.

. I don't want to reinvent ssh or find a better way to implement pgp keys. Of

course, those things are necessary in certain fields, but not in mine.

I was taught that Programming is to Computer Science as a Telescope is to

Astronomy 

This analogy reveals a fundamental misalignment in computer science education. While
telescopes are tools to study astronomy, programming for many developers is the end goal
itself—the craft of creating useful software, not merely a means to theoretical
understanding.

1

http://kennethreitz.org/essays/2009-01-was_college_worth_it


. Its a tool to get to a means. If this is true, than why wasn't I taught how to

make software?

Many Software Developers also have degrees in Electrical Engineering. Why is

this? A CS degree doesn't seem to quite fit either. Perhaps we should make a

separate degree for Software Development?

Computer Science should be separated from Software Development. They should

be two different Degrees 

Kenneth's prescient call for separating CS from software development anticipated the
emergence of bootcamps and practical coding programs. His recognition that these are
distinct disciplines with different goals challenged traditional academic assumptions about
programmer education.

.

When I realized this, I started spending my time focusing on design rather than

math. I learned a great deal of things from color theory to relational spacing and

I found myself a new home: web design. It's a beautiful field. I started to spend

my own time learning software development, rather than spending hours

studying Calc 2 

Kenneth's shift from theoretical math to practical software development and design
fundamentals shaped his later success. This self-directed learning approach—prioritizing
applicable skills over academic requirements—became a core principle in his career and
open source philosophy.

.

Fifteen years later, this intuition about the mismatch between computer science

education and practical software development proved prescient. The same focus

on human-centered design over academic abstraction that led me to abandon

calculus for color theory would eventually inform the 'for humans' philosophy

and my understanding of programming as spiritual practice—recognizing that

the most profound technical work serves human flourishing rather than

algorithmic elegance.

Generated from kennethreitz.org • 2025

2

http://kennethreitz.org/themes/for-humans-philosophy
http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice

	Software Development vs. Computer Science

