
The Future of Python HTTP
2012

3 min read • 766 words

I like to think Requests is mostly analogous to Werkzeug in terms of purpose,

functionality, and goals. One is for servers while the other is for clients.Werkzeug

and Flask were huge inspirations for Requests' design.

This acknowledgment of Werkzeug and Flask's influence reveals Kenneth's design
philosophy: learning from existing excellent libraries and adapting their principles to new
domains. Armin Ronacher's elegant API design patterns clearly influenced the human-
friendly approach of Requests.

As a matter of fact, Requests contains a decent bit of Werkzeug's internal data

structures.

So, why are they separate projects?

Brainstorming
At PyCon 2012 a few weeks ago, Andrey Petrov, Armin Ronacher, Paul McMillan,

and myself got into a room for a brainstorming session around the possibility of

formally combining our efforts.

My expectations going in weren't that high, but that quickly changed once we

were all in the same room. We discussed the general state of Python HTTP,

security concerns,distributed services, and web application testing.

1

http://python-requests.org/
http://werkzeug.pocoo.org/
https://github.com/kennethreitz/requests/blob/develop/requests/utils.py#L99
http://www.amazon.com/gp/product/0596529554/ref=as_li_ss_tl?ie=UTF8&tag=bookforkind-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=0596529554

Today, making real HTTP Requests to an in-process WSGI app with a real HTTP

client is not simple. Can you imagine writing real OAuth tests for your

application with the same HTTP consumer your clients will use?

The root of the problem is that WSGI doesn't map 1:1 to HTTP.

This insight about WSGI's impedance mismatch with HTTP was prescient. WSGI was
designed as a Python-specific abstraction that doesn't fully capture HTTP's semantics,
creating friction when trying to write realistic tests or implement certain HTTP features.

So, instead of taking the WebOb approach of using WSGI as the common

protocol between services, why not use HTTP itself? The rest of the world uses

HTTP as the most-common denominator after all.

After a few hours, we drafted up a solid plan:

Consolidate shared code between Requests and Werkzeug into a new

httpcore module.

Move WSGI-specific Werkzeug code into a new wsgicore module.

Make HTTP (vs WSGI) the common protocol between services.

Provide a transport adapter mechanism for mocking and emulating

HTTP services.

The Architecture
Requests, Flask, and Werkzeug will remain the same to the end user.

Behind the scenes, the same functions used to generate a request will be used to

consume it. For example, stream handling, header parsing, and form-encoding

will all be synchronous functions from httpcore .

•

•

•

•

2

Adapters

Transport Adapters will provide a mechanism to define interaction methods for

an "HTTP" service. They will allow you to fully mock a web service to fit your

needs.

Gloriously simplified example (implementation subject to change):

class DistributedAdapter(BaseAdapter):

 def __init__(self):

 self.connect_pool = …

 def send(self, request):

 """Takes a Request object, returns a Response object."""

 # Whatever needs to happen here.

 …

HTTPCore

HTTPCore will be comprised of the code currently shared by Requests and

Werkzeug, general HTTP utilities, and base objects / data structures.

3

Specifically, it will provide:

Request and Response objects

General HTTP Utilities

Common Data Structures (MultiDict , CaseInsensitiveDict)

Common Data Structure Utilities (merge_kwargs)

Stream Handling (make_line_iter , make_chunk_iter)

HTTP Parsing (http-parser)

URI/IRI Parsing and Handling Functions (uricore)

SSL Utilities

Cookie Handling

Base TransportAdapter

WSGICore

WSGICore will extend the framework that HTTPCore provides to be used by

WSGI applications. It will replace the WSGI-specific parts of Werkzeug:

Request and Response objects

WSGI Transport Adapter (HTTP <-> WSGI)

WSGI Utility Functions

Distributed Services
In addition to testing web applications, this new Adapter system will provide a

fantastic mechanism for distributed services.

In Requests, you'll be able to mount external services to the routing mechanism

bymocking HTTP. To Requests, it'll be an HTTP Service, but in reality the service

could be anything: a random number generator, ZeroMQ socket, proxy, WSGI

application,&c.

Here's some theoretical example code:

•

•

•

•

•

•

•

•

•

•

•

•

•

4

http://www.amazon.com/gp/product/B0043D2ED6/ref=as_li_ss_tl?ie=UTF8&tag=bookforkind-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=B0043D2ED6

import requests

from webscale import DevNullAdapter

from wsgicore.adapters import WsgiAdapter

from haystackapp.core import app as haystack

s = requests.session()

s.mount('null:', DevNullAdapter())

s.mount('http://haystack', WsgiAdapter(app=haystack))

Make a request via DevNullAdapter

r = s.get('null://someurl')

Make a request via Haystack WSGI App

r = s.get('http://haystack/index')

Make a request via standard HTTPS

r = s.get('https://github.com/')

Long-term Advantages
There's a number of advantages to this design and approach in the future:

Requests will be able to use the same cache backends for HTTP

Requests that Flask/Werkzeug does for views. They will be moved to

cachecore .

Security enhancements (e.g. DNSSEC) can live in httpcore rather than

waiting for a PEP or standard library implementation.

Django could potentially utilize the security features provided by

httpcore .

Django/Flask could potentially use Requests as their respective official

test clients.

Development
If you have thoughts to share, feel free to discuss this with us on Freenode at

#cores .

•

•

•

•

5

http://en.wikipedia.org/wiki/Domain_Name_System_Security_Extensions

There's little code to show at the moment, but you can track the development

over on GitHub:

https://github.com/core

Generated from kennethreitz.org • 2025

6

https://github.com/core

	The Future of Python HTTP
	Brainstorming
	The Architecture
	Adapters
	HTTPCore
	WSGICore

	Distributed Services
	Long-term Advantages
	Development

