
How I Develop Things and
Why
2013 

5 min read • 1,119 words 

Themes: Consciousness Technology Programming Spiritual Contemplative

1



2



I've always considered myself a bit of a software junkie. Nothing excites me

more than a great piece of new software. Some of my best childhood memories

are our trips to Grandma’s house, where I’d have access to a computer with a

dial-up connection that I’d use to obtain freeware and shareware. I’d bring 4 or 5

floppies with me and try to cram all the games, waveform editors, and utilities

that I could sneaker-net home.

Luckily today, excellent software written with passion oozes out of the app

ecosystem. OS X and the App Store really fuel an economy of software built for

humans by people that care.

Unfortunately, this doesn’t always hold true in developer software — text editors,

modules, libraries, toolchains, &c. We are forced to deal with APIs on a daily

basis that were not built with the user in mind. Over-engineering surrounds us

as developers. Things that should be simple are often needlessly complex for the

sake of being complex and “proper”.

Why should consumer apps and developer APIs be treated differently?

Have an Issue
The first step to developing something great is to have a real problem. You can’t

solve a problem properly if you don’t experience it firsthand.

On the consumer app side of things, a great example of this is Microsoft

OneNote. Have you used OneNote? It’s incredible.

Essentially, OneNote is a hierarchical freeform note-taking software that

assumes nothing: you can type, use handwriting, embed files, cross-link notes,

sync them online,&c.

Unfortunately, OneNote is only available on Windows. This kills me. I would love

to think that Microsoft’s would port this lovely peice of software to OS X, but I

doubt it will ever happen.

3



If I ever decide to actually ship a consumer product, it will be something akin to

OneNote for OS X. It would be incredible. It may not be for many, but for people

that resonate with my problem, it will work wonderfully. It would be a reaction to

a real problem, not an engineered app an entrepreneur thinks will fill a gap so

he can make some fast cash.

GitHub wasn’t built for the developer community at large; the founders built

GitHub for themselves

Tom Preston-Werner, Chris Wanstrath, and PJ Hyett started GitHub in 2008 because they
were frustrated with existing Git hosting solutions. Their 'scratching your own itch'
approach became one of the most successful developer platforms, validating the principle
that solving your own problems often creates broadly useful solutions.

. The problem they solved simply happened to resonate with millions of

developers because they themselves happen to be developers.

37Signals didn’t build Basecamp for a world full of project managers and

consultants; they built it for themselves. They also developed Ruby on Rails for

themselves, as Ruby developers that were repeating themselves too often.

How pragmatic.

These companies didn’t need to commission lengthy case studies and perform

market analysis. They didn’t setup faux AdWords to measure the effectiveness of

various marketing copy. Yet, they are astronomically successful. How is this

possible? They know exactly what they want to build, how it should function, and

how it should look because they were building it for themselves and not for

others.

Let’s go back to the developer’s side of things.

A great example is my Requests module. I was a heavy user of Convore at the

time, and I wanted to interface with it programmatically. So, I set out to build a

Python module that wrapped the Convore HTTP API. Unfortunately, this was

easier said than done. Dealing with Python’s standard library for HTTP was a

complete and total nightmare. It was over-engineered.

I love Python because it’s a language designed for Humans. Why should modern

HTTP be so difficult? So, I sat out to discover what it was that I wanted, and built

exactly what I needed. It resonated well with others.

4



Nothing is more satisfying than using your own tools to Get Things Done.

Respond with a README
Before I start writing a single line of code, I write the README and fill it with

usage examples

Readme-Driven Development was popularized by GitHub co-founder Tom Preston-Werner in
2010. This approach forces developers to think from the user's perspective first, often
resulting in cleaner, more intuitive APIs—exactly what made Requests so successful.

. I pretend that the module I want to build is already written and available, and I

write some code with it.

This has an incredible effect: instead of engineering something that will only get

the job done, you start to interact with the problem itself and build an interface

that reacts to it.

You discover it. You respond to it.

Great sculptures aren't manufactured — they're discovered. The sculptor studies

and listens to the slab of marble. He identifies with the stone. Then, he responds.

He enables the marble to speak for itself, setting free something beautiful that

hidden was inside all along.

He responds.

This is what responsive design is all about. It's not merely a method to engineer

a web design that will function on a phone, tablet, and desktop.

Beware lest you lose the substance by grasping at the shadow. Responsive

design is about making a design that identifies and understands itself enough to

respond to the environment it's placed in. It is about setting your design free

from arbitrary constraints. It is setting free something beautiful that was inside

all along.

5



The sculptural metaphor here reflects what I would later recognize as

fundamentally contemplative—the same kind of patient attention and responsive

creation that characterizes programming as spiritual practice. Whether working

with marble, code, or consciousness, the process is one of deep listening and

conscious response.

This is known as Readme-Driven Development. I call it Responsive API Design.

Build
Now that you know what your API is: Build it. Make it happen. If there’s a

significant amount of complexity behind a simple call, make a layered API: a

porcelain interface that sits on top of a verbose API that sits on top of an low

level integration interface.

The user API is all that matters. Everything else is secondary.

Once your software is released, improve it! Add new features, better security,

optimal performance, and rigidity. But never compromise the API.

Manifesto
Build things that you want. Build things that you need. Build things for you.

The Golden Rule™:

Do unto others as you would have them do to you.

Adapted to:

Build tools for others that you want to be built for you.

This ethical foundation—treating users with the same respect and care

you'd want from the tools you use—would eventually expand into a

comprehensive approach to conscious technology development that

recognizes every line of code as an act of service to human flourishing.

Generated from kennethreitz.org • 2025

6

http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice

	How I Develop Things and Why
	Have an Issue
	Respond with a README
	Build
	Manifesto


