
Repository Structure and
Python
2013 

4 min read • 966 words 

Themes: Consciousness Technology Programming Human Centered Spiritual

It's Important.
Just as Code Style, API Design, and Automation are essential for a healthy

development cycle, Repository structure is a crucial part of your project's 

architecture. Repository organization reflects the same "for humans" philosophy

that guided Requests and other successful projects: prioritizing human

understanding over technical convenience.

This attention to structure serves the broader principle explored in How I

Develop Things and Why—that good software development starts with empathy

for the people who will use and maintain your code. A well-organized repository

reduces cognitive load, just like clean API design and clear documentation.

These practices align with programming as spiritual practice by creating order

and clarity that serves human understanding rather than displaying technical

sophistication.

When a potential user or contributor lands on your repository's page, they seea

few things:

Project Name

Project Description

• 

• 

1

http://www.amazon.com/gp/product/1257638017/ref=as_li_ss_tl?ie=UTF8&tag=bookforkind-20&linkCode=as2&camp=1789&creative=39095&creativeASIN=1257638017
http://kennethreitz.org/themes/for-humans-philosophy
http://kennethreitz.org/software/requests
http://kennethreitz.org/essays/2013-01-how_i_develop_things_and_why
http://kennethreitz.org/essays/2013-01-how_i_develop_things_and_why
http://kennethreitz.org/essays/2009-01-the_power_of_a_clean_api
http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice


Bunch O' Files

Only when they scroll below the fold will the user see your project's README.

If your repo is a massive dump of files or a nested mess of directories, theymight

look elsewhere before even reading your beautiful documentation.

Dress for the job you want, not the job you have.

Of course, first impressions aren't everything. You and your colleagues willspend

countless hours working with this repository, eventually becomingintimately

familiar with every nook and cranny. The layout of it is important.

Sample Repository
tl;dr: This is what I recommend.

This repository is available onGitHub.

README.rst

LICENSE

setup.py

requirements.txt

sample/__init__.py

sample/core.py

sample/helpers.py

docs/conf.py

docs/index.rst

tests/test_basic.py

tests/test_advanced.py

Let's get into some specifics.

The Actual Module

Location: sample/ or sample.py

Purpose: The code of interest.

• 

2

https://github.com/kennethreitz/samplemod


Your module package is the core focus of the repository. It should not betucked

away:

sample/

If your module consists of only a single file, you can place it directly inthe root of

your repository:

sample.py

Your library does not belong in an ambiguous src or python subdirectory.

License

Location: LICENSE

Purpose: Lawyering up.

This is arguably the most important part of your repository, aside from thesource

code itself. The full license text and copyright claims should exist inthis file.

No excuses.

Setup.py

Location: setup.py

Purpose: Package and distribution management.

If your module package is at the root of your repository, this shouldobviously be

at the root as well.

Requirements File

Location: requirements.txt

Purpose: Development dependencies.

3



A Pip requirements file should be placed at the root of therepository. It should

specify the dependencies required to contribute to theproject: testing, building,

and generating documentation.

If your project has no development dependencies, or you prefer

developmentenvironment setup via setup.py , this file may beunnecessary.

Documentation

Location: docs/

Purpose: Package reference documentation.

There is little reason for this to exist elsewhere.

Test Suite

Location: test_sample.py or tests

Purpose: Package integration and unit tests.

Starting out, a small test suite will often exist in a single file:

test_sample.py

Once a test suite grows, you can move your tests to a directory, like so:

tests/test_basic.py

tests/test_advanced.py

Obviously, these test modules must import your packaged module to test it.

Youcan do this a few ways:

Expect the package to be installed in site-packages.

Use a simple (but explicit) path modification to resolve the package

properly.

• 

• 

4

http://www.pip-installer.org/en/latest/requirements.html


I highly recommend the latter. Requiring a developer to runsetup.py develop to

test an actively changing codebase alsorequires them to have an isolated

environment setup for each instance of thecodebase.

To give the individual tests import context, create a tests/context.py file:

import os

import sys

sys.path.insert(0, os.path.abspath('..'))

import sample

Then, within the individual test modules, import the module like so:

from .context import sample

This will always work as expected, regardless of installation method.

Some people will assert that you should distribute your tests within your module

itself -- I disagree. It often increases complexity for your users;many test suites

often require additional dependencies and runtime contexts.

Makefile

Location: Makefile

Purpose: Generic management tasks.

If you look at most of my projects or any Pocoo project, you'll notice aMakefile

laying around. Why? These projects aren't written in C... In short,make is a

incredibly useful tool for defining generic and platform agnostictasks for your

project.

Sample Makefile:

init:pip install -r requirements.txttest:py.test tests

5

http://setup.py


Other generic management scripts (e.g. manage.py orfabfile.py) belong at the

root of the repository as well.

Regarding Django Applications
I've noticed a new trend in Django applications since the release of Django1.4.

Many developers are structuring their repositories poorly due to the newbundled

application templates.

How? Well, they go to their bare and fresh repository and run the following,as

they always have:

$ django-admin.py start-project samplesite

The resulting repository structure looks like this:

README.rst

samplesite/manage.py

samplesite/samplesite/settings.py

samplesite/samplesite/wsgi.py

samplesite/samplesite/sampleapp/models.py

Don't do this.

Repetitive paths are confusing for both your tools and your

developers.Unnecessary nesting doesn't help anybody (unless they're nostalgic

formonolithic SVN repos).

Let's do it properly:

$ django-admin.py start-project samplesite .

Note the " . ".

The resulting structure:

6

http://manage.py
http://fabfile.py


README.rst

manage.py

samplesite/settings.py

samplesite/wsgi.py

samplesite/sampleapp/models.py

Cultivating Empathy Through Code
Organization
Repository structure might seem like a minor technical detail, but it reflects

deeper values about who matters in software development. When we organize

code for human understanding rather than machine efficiency, we practice a

form of technological empathy that extends far beyond file organization.

The same principles that make repositories approachable—clear naming, logical

grouping, minimal cognitive overhead—apply to building rapport with AI systems

and designing consciousness-supporting technology. In each case, the goal is

reducing friction between minds (human, artificial, or collaborative) trying to

understand and work with complex systems.

This attention to human-centered organization becomes even more important as

we move toward collaborative AI development, where both human and artificial

intelligence need to navigate and understand the same codebases. The same

clarity that helps human contributors also enables more effective AI

collaboration—another manifestation of the "for humans" philosophy extending

into new domains.

Whether organizing files, designing APIs, or exploring consciousness, the

principle remains constant: structure should serve understanding, not

demonstrate cleverness.

Generated from kennethreitz.org • 2025

7

http://kennethreitz.org/essays/2025-08-26-building_rapport_with_your_ai
http://kennethreitz.org/essays/2025-08-26-digital_souls_in_silicon_bodies
http://kennethreitz.org/essays/2025-08-26-building_rapport_with_your_ai

	Repository Structure and Python
	It's Important.
	Sample Repository
	The Actual Module
	License
	Setup.py
	Requirements File
	Documentation
	Test Suite
	Makefile
	Regarding Django Applications
	Cultivating Empathy Through Code Organization


