
Introducing Maya: Datetimes
for Humans™
2016

2 min read • 401 words

Datetimes are a headache to deal with in Python, especially when dealing with

timezones, especially when dealing with different machines with different

locales.

Maya exists to do all the hard work for you, so you can focus on what you're

trying to do — import or export simple datetime data in known human and

machine-readable formats. This continues the "for Humans" design philosophy of

making complex technical tasks accessible through intuitive APIs.

1

https://github.com/kennethreitz/maya
http://kennethreitz.org/essays/2025-08-26-ahead_of_my_time_i_think

Example Usage of Maya (v0.1.0)

>>> now = maya.now()

<MayaDT epoch=1481850660.9>

>>> tomorrow = maya.when('tomorrow')

<MayaDT epoch=1481919067.23>

>>> tomorrow.slang_date()

'tomorrow'

>>> tomorrow.slang_time()

'23 hours from now'

>>> tomorrow.iso8601()

'2016-12-16T15:11:30.263350Z'

>>> tomorrow.rfc2822()

'Fri, 16 Dec 2016 20:11:30 -0000'

>>> tomorrow.datetime()

datetime.datetime(2016, 12, 16, 15, 11, 30, 263350, tzinfo=<UTC>)

Automatically parse datetime strings and generate naive datetimes.

>>> scraped = '2016-12-16 18:23:45.423992+00:00'

>>> maya.parse(scraped).datetime(to_timezone='US/Eastern', naive=True)

datetime.datetime(2016, 12, 16, 13, 23, 45, 423992)

>>> rand_day = maya.when('2011-02-07', timezone='US/Eastern')

<MayaDT epoch=1297036800.0>

Note how this is the 6th, not the 7th.

>>> rand_day.day

6

Always.

>>> rand_day.timezone

'UTC'

2

Why is this useful?
All timezone algebra will behave identically on all machines, regardless

of system locale.

Complete symmetric import and export of both ISO 8601 and RFC

2822 datetime stamps.

Fantastic parsing of both dates written for/by humans and machines

(maya.when() vs. maya.parse()).

Support for human slang, both import and export (e.g. 'an hour ago').

Datetimes can very easily be generated, with or without timezone

information attached (naive).

This library is based around epoch time, but dates before Jan 1 1970

are indeed supported, via negative integers.

Maya never panics, and always carries a towel.

What about Delorean, Arrow, &
Pendulum?
Arrow, for example, is a fantastic library, but isn't what I wanted in a datetime

library. In many ways, it's better than Maya for certain things. In some ways, in

my opinion, it's not.

I simply desire a sane API for datetimes that made sense to me for all the things

I'd ever want to do—especially when dealing with timezone algebra. Arrow

doesn't do all of the things I need (but it does a lot more!). Maya does do exactly

what I need.

I think these projects complement each-other, personally. Maya is great for

parsing websites, for example. Arrow supports floors and ceilings and spans of

dates, which Maya does not at all.

Installing Maya

$ pip install maya

•

•

•

•

•

•

•

3

http://arrow.readthedocs.io

External Links
Maya on GitHub

Maya in The Cheeseshop

Say Thanks™

Generated from kennethreitz.org • 2025

•

•

•

4

https://github.com/kennethreitz/maya
https://pypi.python.org/pypi/maya/0.1.0
https://saythanks.io/to/kennethreitz

	Introducing Maya: Datetimes for Humans™
	Example Usage of Maya (v0.1.0)
	Why is this useful?
	What about Delorean, Arrow, & Pendulum?
	Installing Maya
	External Links

