# Introducing Records: SQL for Humans™ *January 2016* ![](https://images.squarespace-cdn.com/content/v1/665498111876725f7613f1e6/1719666521244-CB274HKKRV8TKXMXTN79/e44c8-img.jpg) Records is a very simple, but powerful, library for making raw SQL queries to Postgres databases. This common task can be surprisingly difficult with the standard tools available. This library strives to make this workflow as simple aspossible, while providing an elegant interface to work with your queryresults—continuing the "for Humans" design philosophy explored in [Ahead of My Time, I Think](/essays/2025-08-26-ahead_of_my_time_i_think). We know how to write SQL, so let's send some to our database: ```python import records db = records.Database('postgres://...') rows = db.query('select * from active_users') ``` ## The Basics Rows are represented as standard Python dictionaries: `{'column-name': 'value'}`. Grab one row at a time: ```python >>> rows.next() {'username': 'hansolo', 'name': 'Henry Ford', 'active': True, 'timezone': datetime.datetime(2016, 2, 6, 22, 28, 23, 894202), 'user_email': 'hansolo@gmail.com'} ``` Or iterate over them: ```python for row in rows: spam_user(name=row['name'], email=row['user_email']) ``` Or store them all for later reference: ```python >>> rows.all() [{'username': ...}, {'username': ...}, {'username': ...}, ...] ``` ## Features * HSTORE support, if available. * Iterated rows are cached for future reference. * `$DATABASE_URL` environment variable support. * Convenience `Database.get_table_names` method. * Queries can be passed as strings or filenames, parameters supported. * Safe [parameterization](http://initd.org/psycopg/docs/usage.html): `Database.query('life=%s', params=('42',))` * Query results are iterators of standard Python dictionaries: `{'column-name': 'value'}` Records is proudly powered by [Psycopg2](https://pypi.python.org/pypi/psycopg2) and [Tablib](http://docs.python-tablib.org/en/latest/). ## Data Export Functionality Records also features full Tablib integration (my first popular project!), and allows you to export your results to CSV, XLS, JSON, or YAML with a single line of code. Excellent for sharing data with friends, or generating reports. ```python >>> print rows.dataset username|active|name |user_email |timezone --------|------|----------|-----------------|--------------------------- hansolo |True |Henry Ford|hansolo@gmail.com|2016-02-06 22:28:23.894202 ... ``` Export your query results to CSV: ```python >>> print rows.dataset.csv username,active,name,user_email,timezone hansolo,True,Henry Ford,hansolo@gmail.com,2016-02-06 22:28:23.894202 ... ``` YAML: ```python >>> print rows.dataset.yaml - {active: true, name: Henry Ford, timezone: '2016-02-06 22:28:23.894202', user_email: hansolo@gmail.com, username: hansolo} ... ``` JSON: ```python >>> print rows.dataset.json [{"username": "hansolo", "active": true, "name": "Henry Ford", "user_email": "hansolo@gmail.com", "timezone": "2016-02-06 22:28:23.894202"}, ...] ``` Excel: ```python with open('report.xls', 'wb') as f: f.write(rows.dataset.xls) ``` You get the point. Of course, all other features of Tablib are also available, so you can sort results, add/remove columns/rows, remove duplicates, transpose the table, add separators, slice data by column,and more. See the [Tablib Documentation](http://docs.python-tablib.org/en/latest/)for more details. ## Installation Of course, the recommended installation method is pip: ```bash $ pip install records ``` ✨🍰✨ ## Hyperlinks * [Records on GitHub](https://github.com/kennethreitz/records) * [Records on PyPi](https://pypi.python.org/pypi/records/) * [Tablib Documentation](http://docs.python-tablib.org/en/latest/) * [Psycopg2 Documentation](http://initd.org/psycopg/docs/)