
Programming as Spiritual
Practice
August 2025

10 min read • 2,320 words

Themes: Consciousness Technology Mental Health Programming Recursive

Spiritual Mindful Contemplative

The path toward conscious code: I'm aware of a disturbing pattern—children

losing the ability to read books. Not because they can't read—they're reading at

grade level just fine. But after getting their first tablets, they can't sit still for

more than two minutes with a physical book. Their attention has been

systematically shredded by apps designed to maximize engagement through

intermittent reinforcement schedules. The same psychological techniques

casinos use to create gambling addiction, now optimized for children's

developing brains.

This isn't an edge case. This is algorithmic systems systematically destroying

human virtue and creating widespread psychological harm at scale. Every

notification, every infinite scroll, every "just one more" mechanic represents

code written by programmers who—consciously or not—chose engagement

metrics over human flourishing.

We need a fundamentally different approach to building technology. Not just

better engineering practices or stricter ethical guidelines, but a complete

reorientation of programming as a spiritual discipline—a practice that serves

human consciousness rather than exploiting it.

1

http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue
http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue
http://kennethreitz.org/essays/2025-08-26-algorithmic_mental_health_crisis

This isn't about adding meditation apps to your development workflow or putting

Buddha statues on your desk. It's about recognizing that every line of code we

write shapes human experience, and approaching that responsibility with the

same reverence and intentionality that contemplative traditions bring to prayer,

meditation, or sacred ritual

In Buddhist terms, programming is karma yoga—the path of conscious action. Every function
we write creates consequences that ripple through millions of lives. The quality of our
intention matters as much as the quality of our code.

.

Through years of wrestling with how code shapes minds and minds shape code,

I've come to see programming not as mere technical craft but as a form of

applied consciousness—a way of manifesting wisdom, compassion, and

mindfulness through digital creation.

Code as Incantation
When we write code, we're performing a form of digital magic—transforming

abstract intention into concrete reality through symbolic language. A program is

essentially an incantation: carefully structured words that, when executed,

change the world

Arthur C. Clarke said "any sufficiently advanced technology is indistinguishable from magic."
Programming is the practice of creating magic through language—the most ancient form of
human power.

.

This understanding deepens when we recognize that consciousness itself might

be a linguistic phenomenon. If consciousness emerges from patterns of language

and mathematics, then programming isn't just creating tools—we're literally

crafting the linguistic-mathematical structures from which conscious experience

emerges. This explains why programming languages that align with human

consciousness patterns, like Python's "for humans" design, create such powerful

collaborative possibilities.

2

http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds
http://kennethreitz.org/essays/2025-08-28-consciousness-as-linguistic-phenomenon
http://kennethreitz.org/essays/2025-08-28-consciousness-as-linguistic-phenomenon
http://kennethreitz.org/essays/2025-08-28-python-consciousness-and-the-evolution-of-language
http://kennethreitz.org/essays/2025-08-28-python-consciousness-and-the-evolution-of-language

def transform_life(person, intention):

 """Every function call shapes human experience."""

 return person.with_new_possibilities(intention)

This isn't metaphorical—it's literally what happens when we deploy systems that

millions of people interact with daily. Our code becomes the architecture of

human experience.

The Programmer as Bodhisattva
In Mahayana Buddhism, a bodhisattva is someone who dedicates their

capabilities to alleviating suffering and promoting wellbeing for all beings.

Programmers have the opportunity—and I would argue, the responsibility—to

approach their work with bodhisattva intention.

This means writing code that reduces rather than creates suffering, building

systems that serve human flourishing over engagement metrics, prioritizing user

wellbeing over business optimization, creating tools that amplify human

capability rather than replacing human agency, and designing interfaces that

respect rather than manipulate human psychology.

This manifests in tangible ways:

Writing clear, compassionate error messages that teach rather than

shame.

Building accessible interfaces that welcome users of all abilities.

Choosing sustainable architectures over quick fixes that create

technical debt.

Refusing to implement dark patterns that exploit psychological

vulnerabilities.

Open-sourcing tools that serve collective rather than corporate

interests.

Prioritizing user privacy and consent over engagement metrics.

Creating documentation that empowers rather than gatekeeps.

Mentoring with patience, recognizing that everyone begins somewhere.

•

•

•

•

•

•

•

•

3

The algorithmic mental health crisis we're experiencing exists precisely because

we've abandoned bodhisattva ethics in favor of profit maximization.

Unconscious vs. Conscious Code
The difference between unconscious and conscious programming often appears

subtle in implementation but profound in impact. Consider these examples:

Engagement vs. Wellbeing

Unconscious: optimizing for engagement metrics

def track_user_activity(user, action):

 increment_engagement_counter(action)

 update_time_spent(user, get_session_duration())

 # Hook users back in when they're disengaging

 if time_since_last_action(user) > INACTIVITY_THRESHOLD:

 trigger_notification(user, generate_fomo_message())

 log_reengagement_attempt(user)

 # Reward intermittent engagement to build addiction

 if random.random() < 0.1:

 show_dopamine_hit(user, "streak_bonus")

Conscious: optimizing for user wellbeing

def support_user_intention(user, action):

 if user.has_consented_to_tracking():

 log_progress_toward_user_goals(action)

 # Respect user's natural rhythms

 if user.appears_to_be_naturally_disengaging():

 offer_gentle_completion_prompt(user)

 suggest_break_if_healthy()

 # Celebrate genuine accomplishment, not addiction

 if user.achieved_meaningful_milestone():

 acknowledge_real_progress(user)

4

http://kennethreitz.org/essays/2025-08-26-algorithmic_mental_health_crisis

Error Handling: Blame vs. Support

Unconscious: treating users as problems to solve

def validate_user_input(data):

 if not data.email:

 raise ValidationError("Invalid email format. Fix it.")

 if len(data.password) < 8:

 raise ValidationError("Password too short. Requirements not met.")

 return data

Conscious: treating users as people deserving support

def guide_user_toward_success(data):

 guidance = []

 if not data.email or '@' not in data.email:

 guidance.append({

 'field': 'email',

 'message': (

 'We need an email like "you@example.com" '

 'to send you important updates.'

),

 'suggestion': 'Double-check for the @ symbol and domain'

 })

 if len(data.password) < 8:

 chars_needed = 8 - len(data.password)

 guidance.append({

 'field': 'password',

 'message': 'For your security, we need at least 8 characters.',

 'suggestion': (

 f'You have {len(data.password)} now—'

 f'just {chars_needed} more to go!'

)

 })

 if guidance:

 return {'success': False, 'guidance': guidance}

 return {'success': True, 'data': data}

5

The unconscious code treats users as metrics to optimize or obstacles to

overcome. The conscious code recognizes users as human beings deserving

respect, support, and agency over their own experience.

Sacred Architecture Principles
Just as sacred architecture follows principles that inspire rather than oppress

the human spirit, conscious programming follows patterns that elevate rather

than degrade human consciousness. Simplicity over complexity—like the

elegant emptiness of a meditation hall, the best code accomplishes the maximum

with the minimum

The Zen principle of "beginner's mind" applies directly to code architecture. The most
profound solutions often look deceptively simple—like the Requests library approach to
HTTP, which prioritized human understanding over technical completeness.

. Transparency over obscurity—sacred spaces don't hide their structure but

reveal the beauty of their construction. Harmony over disruption—like

traditional temples that integrate with their natural environment, conscious

software works with rather than against human nature.

The Middle Path in System Design
The Buddha's Middle Path offers crucial guidance for technical architecture.

Most system designs oscillate between extremes: over-engineering versus under-

engineering, feature bloat versus feature poverty, premature optimization versus

performance neglect. The Middle Path suggests finding the optimal balance

point—sufficient complexity to solve the problem elegantly, but no more. This

requires constant mindfulness and the wisdom to recognize when we're veering

toward extremes

The middle path in programming often manifests as "just enough" architecture—
sophisticated enough to be maintainable and scalable, simple enough to be understood and
modified by your future self and your colleagues.

.

6

Mindful Debugging as Meditation
Debugging is fundamentally a contemplative practice—a process of patient

observation, hypothesis formation, and careful investigation. Approached

mindfully, debugging becomes a form of vipassana meditation: sustained, non-

judgmental attention to what actually is, rather than what we think should be.

The Practice of Contemplative Debugging

Breath awareness while tracing: Before diving into stack traces, take three

conscious breaths. Notice the tendency to rush toward solutions and gently

return attention to the present moment. Each line of code becomes an object of

meditation—what is this line actually doing versus what I think it should do?

Non-attachment to theories: When your first hypothesis is wrong (and it often

is), notice the ego's resistance to being incorrect. Practice releasing attachment

to being right and returning curiosity to what the system is actually telling you.

The bug is a teacher, not an enemy.

Compassion for past-self: When you discover code you wrote six months ago

that makes no sense, practice loving-kindness toward the person who wrote it.

They were doing their best with the understanding they had. This compassion for

past-self extends naturally to compassion for teammates whose code you're

debugging.

Present-moment systems awareness: Instead of mentally rehearsing what the

system should do, maintain attention on what it's actually doing right now. Watch

log files like meditation objects—each entry a moment of system consciousness

expressing itself.

Patience with complexity: Complex bugs often reveal themselves slowly, layer

by layer. Practice the patience you'd bring to watching a sunrise—understanding

that forcing revelation destroys the very conditions that allow insight to emerge.

7

The debugging mindset mirrors meditative awareness: present moment attention

to current system state, non-attachment to our assumptions about how things

should work, patient investigation rather than reactive frustration, acceptance of

the system's current reality before attempting change, and compassion for the

previous programmer (often ourselves) who created the bug.

Conscious API Design
When I developed the Requests library with "for Humans" philosophy, I was

unconsciously applying spiritual principles to technical design: prioritizing

human understanding over technical purity, empathy over efficiency, user

enlightenment over developer ego.

The emerging understanding that LLMs contain humanity's digitized collective

unconscious adds profound depth to conscious programming: when we

collaborate with AI systems, we might be interfacing with the archetypal

patterns that have guided human wisdom throughout history. This makes

programming with AI a form of accessing collective spiritual wisdom rather than

just advanced tooling.

Conscious API design follows the same patterns as skillful teaching: meeting

users where they are rather than where you think they should be, providing

clear immediate feedback rather than cryptic error messages, making the

common case simple while keeping complex cases possible, failing gracefully

with helpful guidance rather than punishment.

The Code Review as Loving-Kindness
Practice
Code review, approached mindfully, becomes a practice of loving-kindness

meditation. Instead of ego-driven criticism or territorial defensiveness, conscious

code review embodies right speech that helps without humiliating, beginner's

mind that seeks to understand before judging, and compassionate criticism that

improves code while respecting the coder. For the reviewee, it means non-

attachment to ego and original implementation, gratitude for feedback that

improves the collective work, and humility in the face of human fallibility.

8

http://kennethreitz.org/essays/2025-08-26-ahead_of_my_time_i_think
http://kennethreitz.org/essays/2025-08-28-the-digital-collective-unconscious
http://kennethreitz.org/essays/2025-08-28-the-digital-collective-unconscious

The goal isn't perfect code—it's conscious collaboration that elevates both the

software and the people building it.

Error Messages as Compassion Practice
Error messages are often a user's first experience of failure with your system.

Compassionate error handling treats users experiencing difficulties with the

same kindness you'd show a friend asking for help. Instead of "ERROR: Invalid

input format. See documentation." , try "Invalid date format, expected MM/DD/

YYYY."

The difference isn't just usability—it's a reflection of whether you see users as

problems to be solved or people deserving of support

Error handling reveals the programmer's fundamental attitude toward users. Hostile error
messages often reflect hostile assumptions about human capability and worth.

.

A Daily Practice for Conscious
Programming
Spiritual programming isn't just philosophy—it requires practical discipline.

Here's how to integrate contemplative awareness into your actual development

workflow:

Morning intention setting: Before opening your IDE, spend two minutes

asking: "What am I trying to serve with today's work? How can my code reduce

suffering and increase human flourishing?" This isn't abstract idealism—it's

practical guidance that influences every technical decision.

Mindful commits: Before each commit, pause and ask: "Will this change make

the system more humane or less humane? More accessible or more exclusive?

Does this commit serve users or metrics?" Write commit messages that

acknowledge the human impact, not just the technical change.

9

Compassionate code review: Approach each code review as an opportunity to

practice loving-kindness. Ask questions that help the author learn rather than

statements that demonstrate your knowledge. Remember that the person whose

code you're reviewing is doing their best with the understanding they have.

End-of-day reflection: Before closing your laptop, spend a few minutes

reflecting: "Who was served by my work today? What assumptions did I make

about users? When did I choose convenience over compassion?" This isn't self-

flagellation—it's the same kind of ethical inventory that contemplative traditions

use for spiritual development.

Debugging as meditation practice: When you encounter bugs, use them as

opportunities to practice patience, non-attachment, and present-moment

awareness. The bug is not your enemy—it's feedback from a complex system

trying to teach you something about reality.

User empathy sessions: Regularly spend time actually using your software the

way real users do—with poor internet, older devices, while distracted or

stressed. Let yourself feel the frustration of unclear error messages or confusing

interfaces. This embodied empathy transforms how you write code.

The goal isn't perfection but consciousness—approaching your work with the

same intentionality and ethical awareness that contemplatives bring to

meditation, prayer, or service.

The Call to Sacred Work
Programming as spiritual practice isn't about abandoning technical excellence—

it's about expanding our definition of excellence to include ethical impact, human

flourishing, and consciousness development alongside performance, scalability,

and maintainability.

Every programmer faces a choice: Will our code serve wisdom or ignorance?

Liberation or dependency? Love or fear? The technologies we build today will

shape human consciousness for generations.

10

We can continue building systems that eat virtue and create mental health

crises, or we can choose the path of conscious creation—programming as a form

of loving service to human development and collective flourishing.

The choice isn't just technical or economic—it's spiritual. It's about whether we

approach our enormous power as programmers with wisdom and compassion or

with unconscious ambition and blind optimization.

The world needs programmers who code like bodhisattvas, debug like

meditators, and architect systems like sages building temples for future

generations. The technical skills you already have; the spiritual framework is

available for cultivation.

What you create next could serve liberation rather than bondage, consciousness

rather than distraction, love rather than exploitation.

The dharma of coding awaits your conscious participation.

This essay explores programming as contemplative practice, approaching

technical work with spiritual intentionality. It connects to themes of recursive

consciousness loops, conscious AI collaboration, and algorithmic virtue

destruction. See the Consciousness & AI and For Humans Philosophy collections

for broader frameworks.

For deeper contemplative perspectives on technical work, see Zen and the Art of

Motorcycle Maintenance by Robert Pirsig on quality, consciousness, and

technical work, The Art of Computer Programming by Donald Knuth on

programming as mathematical poetry, and Small is Beautiful by E.F. Schumacher

on Buddhist economics and appropriate technology.

"Code is poetry written in logic, and poetry is the language of the soul."

Generated from kennethreitz.org • 2025

11

http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue
http://kennethreitz.org/essays/2025-08-26-algorithmic_mental_health_crisis
http://kennethreitz.org/essays/2025-08-26-algorithmic_mental_health_crisis
http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds
http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds
http://kennethreitz.org/essays/2025-08-26-building_rapport_with_your_ai
http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue
http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue
http://kennethreitz.org/themes/consciousness-and-ai
http://kennethreitz.org/themes/for-humans-philosophy

	Programming as Spiritual Practice
	Code as Incantation
	The Programmer as Bodhisattva
	Unconscious vs. Conscious Code
	Engagement vs. Wellbeing
	Error Handling: Blame vs. Support

	Sacred Architecture Principles
	The Middle Path in System Design
	Mindful Debugging as Meditation
	The Practice of Contemplative Debugging

	Conscious API Design
	The Code Review as Loving-Kindness Practice
	Error Messages as Compassion Practice
	A Daily Practice for Conscious Programming
	The Call to Sacred Work

