
The Case for Bash
August 2025

5 min read • 1,048 words

Themes: Programming Recursive

During my time at Heroku, I learned to appreciate the Bash programming

language for performing system tasks. I maintained the Python buildpack—the

system that automatically detected and deployed Python applications—and the

entire thing was written in Bash

The Python buildpack is roughly 2,000 lines of Bash that handles Python version detection,
pip installation, dependency management, Django collectstatic, and dozens of edge cases. It
processes hundreds of thousands of deployments daily.

. Not Python, not Ruby, not any of the "modern" languages we champion. Just

good old Bash, orchestrating complex deployment workflows for millions of

applications.

There's a reason we chose Bash for something so critical. Not shell scripting in

general, not zsh or fish with their quality-of-life improvements, but Bash

specifically—the GNU Bourne Again Shell that's been installed by default on

Linux systems since 1989

While zsh and fish offer better interactive experiences, Bash remains the POSIX-compliant
choice that works identically across Ubuntu, CentOS, Alpine Linux, and macOS. This
predictability is invaluable for production systems.

.

1

https://github.com/heroku/heroku-buildpack-python

The Language That Refuses to Die
Bash is like water—it finds its way into every system, flowing through the cracks

of our infrastructure. Every Linux server speaks it. Every Docker container

understands it. When you SSH into a burning production system at 3 AM, armed

with nothing but desperation and a terminal, Bash is there, waiting.

This ubiquity isn't luck. While we've been building deployment orchestration

platforms that require Kubernetes clusters just to say hello world

A minimal "Hello World" deployment on Kubernetes requires at least: a Deployment
manifest, a Service manifest, an Ingress configuration, and often a ConfigMap. That's before
considering namespaces, RBAC, or networking policies.

, Bash has been quietly shipping code with the same humble syntax it learned in

1989. It's the cockroach of programming languages—unkillable, omnipresent,

and surprisingly capable when you need it most.

The Beauty of Pipes
Consider a simple task: find all Python files in a project, search for a specific

import, and count the occurrences. In Bash, it's one line:

find . -name "*.py" | xargs grep "import requests" | wc -l

That's it. Three commands, two pipes, one result. The data flows naturally from

left to right, each command doing one thing well

This is the Unix philosophy in action: "Write programs that do one thing and do it well. Write
programs to work together." Bash didn't invent this—it just makes it effortless.

.

Now try the same thing in Python:

2

from pathlib import Path

count = 0

Find all Python files recursively.

for py_file in Path('.').rglob('*.py'):

 try:

 # Read file and count matching lines.

 content = py_file.read_text(encoding='utf-8')

 for line in content.splitlines():

 if 'import requests' in line:

 count += 1

 except (IOError, UnicodeDecodeError):

 # Handle files we can't read.

 pass

if __name__ == "__main__":

 print(count)

The Python version is more "proper" programming, but it's also more verbose,

more error-prone, and honestly, more complex for what should be a simple task.

We need explicit encoding handling, exception management for unreadable files,

path joining logic. We've taken something that flows naturally and turned it into

a state management problem

There's a cognitive bias in programming where more verbose, "enterprise-ready" solutions
are perceived as more professional. Sometimes a one-liner is actually the more sophisticated
choice.

.

The Misunderstood Language
People love to hate Bash. "It's unreadable!" they cry, while writing React

components that require a PhD in hook dependencies

3

Try explaining useEffect dependency arrays to someone who's never seen them. "Well, if you
don't include the right dependencies, it might not re-render, but if you include too many, it
might re-render infinitely, and also don't forget about useCallback..."

. "It's error-prone!" they shout, ignoring their node_modules folder containing

more code than the Linux kernel

The Linux kernel is about 28 million lines of code. A typical React application's
node_modules easily exceeds this. We're importing the equivalent of an operating system to
display a todo list.

.

Here's the thing: Bash isn't trying to win a beauty contest. It's not auditioning

for your startup's tech stack. Bash is the plumber of the programming world—it

shows up, connects the pipes, and makes sure your data flows where it needs to

go. You don't need to invite it to dinner.

Yes, [[]] vs [] is confusing. Yes, 'string' vs "string" is unobvious to

newcomers. Yes, variable expansion rules seem designed by someone who hates

humanity. But you know what? Regular expressions are also insane, and we still

use them. SQL reads like English written by aliens, and we still query databases.

And here's the kicker: tools like shellcheck elevate your Bash programs

significantly, catching these gotchas before they bite you. Bash's syntax is the

price of admission to a language that runs literally everywhere without asking

permission.

The Deployment Reality
Building deployment systems at Heroku taught me that the genius isn't in

complex logic but in orchestration. Detect the app type, set up the environment,

install dependencies, run build steps. Bash excels at this kind of system

coordination because that's literally what it was designed for.

Now, yes, Python is part of the Linux Standard Base, so theoretically you could

write system scripts in Python. But here's where theory meets reality: which

Python? Python 2.7? 3.6? 3.11? The LSB specifies Python should be there, but

not which version. And God help you if you need any package beyond the

4

https://www.shellcheck.net/
https://en.wikipedia.org/wiki/Linux_Standard_Base

standard library—suddenly your simple system script needs pip, virtualenvs, and

dependency management. Your "portable" Python script just became a

deployment nightmare.

Bash doesn't have this problem. Bash 3.2 from 2006 runs the same scripts as

Bash 5.2 from 2022. No pip. No virtualenv. No questioning whether

subprocess.run() exists in this version or if you need subprocess.call() . Just

#!/bin/bash and go.

The Uncomfortable Truth
Bash is the Latin of programming—dead, supposedly, yet somehow the

foundation of everything we build. Every Docker container starts with a Bash

command. Every CI/CD pipeline is secretly Bash in a trench coat. Every

deployment script, monitoring tool, and system automation eventually reveals

itself to be Bash all the way down.

You can hate Bash. You can avoid it. You can write elaborate Python scripts to

avoid learning its syntax. But eventually, at some point, you'll type #!/bin/bash

because you need something to just work, everywhere, without drama.

And it will.

Bash isn't the language we deserve. It's the language we have. And sometimes,

that's exactly what we need.

Generated from kennethreitz.org • 2025

5

	The Case for Bash
	The Language That Refuses to Die
	The Beauty of Pipes
	The Misunderstood Language
	The Deployment Reality
	The Uncomfortable Truth

