
Vedic Principles in Python
September 2025

8 min read • 1,779 words

Themes: Consciousness Technology Programming Recursive Spiritual

- - (vedika-siddhāntāḥ pāyathana-bhāṣāyām)

The Vedas contain computational wisdom that predates computers by millennia.

Swami Vivekananda first brought these principles West in the 1890s. Teachers

like Ram Dass continued this translation work, making Eastern philosophy more

accessible to contemporary minds. As I explored in Ram Dass Teachings in

Python, spiritual insights can find expression through any symbolic system.

My engagement with these teachings is primarily academic—I find the

conceptual frameworks fascinating as philosophical systems. As my Sanskrit

Musings explore, ancient wisdom and modern programming reveal recursive

patterns about consciousness itself.

Sat-Chit-Ananda: Being, Consciousness,
Bliss

- - (sat-cit-ānanda)

The Vedantic teaching identifies three fundamental attributes that constitute

ultimate reality—existence (sat), consciousness (chit), and bliss (ananda). These

aren't separate qualities but aspects of a unified whole, like how a dataclass

might represent the irreducible properties of a base type.

1

http://kennethreitz.org/essays/2025-09-05-ram_dass_teachings_in_python
http://kennethreitz.org/essays/2025-09-05-ram_dass_teachings_in_python
http://kennethreitz.org/poetry/sanskrit-musings/
http://kennethreitz.org/poetry/sanskrit-musings/

from dataclasses import dataclass

@dataclass

class BrahmanBase:

 """The fundamental class from which all existence inherits."""

 sat: bool = True # Pure existence

 chit: bool = True # Pure consciousness

 ananda: bool = True # Pure bliss

 def manifest(self, form):

 """All manifestation is modification of the one consciousness."""

 return form(self.sat, self.chit, self.ananda)

 def realize_self(self):

 """Self-realization: recognizing what you always were."""

 return self # You were never not this

Every object in the universe inherits these fundamental properties—existence,

awareness, and the natural bliss of being what you are

This concept appears throughout The Lambda Vedas where pure functions mirror absolute
consciousness.

.

Maya: The Illusion Engine
 (māyā)

Maya represents the power by which the One appears as Many—not false

illusion but creative projection. Like a graphics engine that renders multiple

objects from a single data source, Maya allows unified consciousness to

experience itself as diverse phenomena.

2

http://kennethreitz.org/poetry/sanskrit-musings/the-lambda-vedas

class Maya:

 """The power that makes the One appear as Many."""

 def __init__(self, observer):

 self.observer = observer

 self.projections = {}

 def create_world(self, consciousness):

 """Project multiplicity onto unity."""

 # The same consciousness appears as different objects

 self.projections['mountains'] = consciousness.as_solid()

 self.projections['rivers'] = consciousness.as_flowing()

 self.projections['sky'] = consciousness.as_spacious()

 self.projections['you'] = consciousness.as_individual()

 self.projections['me'] = consciousness.as_separate()

 return self.projections

 def pierce_illusion(self):

 """See through the appearance to the underlying unity."""

 for form, essence in self.projections.items():

 assert essence == self.observer # All is One

 return "Tat tvam asi" # Thou art That

Maya operates like a single process spawning multiple threads—they seem

separate but share the same underlying execution space

The concept of consciousness threading through apparent multiplicity appears in Git as
Karma—branches as parallel lives of the same repository.

.

Karma: The Law of Action-Consequence
 (karma)

3

http://kennethreitz.org/poetry/sanskrit-musings/git-as-karma
http://kennethreitz.org/poetry/sanskrit-musings/git-as-karma

Karma operates as the universe's immutable ledger system—every action

generates consequences that must eventually resolve. Like an event queue that

processes all operations in perfect order, no action ever gets lost or forgotten in

the cosmic program.

4

from collections import deque

import asyncio

class KarmaQueue:

 """Actions and their consequences in perfect sequence."""

 def __init__(self):

 self.action_queue = deque()

 self.result_queue = deque()

 self.running = True

 async def perform_action(self, action, intention):

 """Every action creates a karmic seed."""

 karmic_seed = {

 'action': action,

 'intention': intention,

 'timestamp': await self.get_cosmic_time(),

 'agent': await self.get_current_incarnation()

 }

 self.action_queue.append(karmic_seed)

 return await self.process_karma()

 async def process_karma(self):

 """The universe processes all actions eventually."""

 while self.action_queue:

 seed = self.action_queue.popleft()

 # Results ripen when conditions are perfect

 await self.wait_for_right_conditions(seed)

 result = await self.generate_consequence(seed)

 self.result_queue.append(result)

 return self.experience_result()

 def purify_karma(self, wisdom):

5

 """Consciousness purifies action through understanding."""

 for seed in list(self.action_queue):

 if seed['intention'].is_pure():

 seed['consequence'] = 'liberation'

 else:

 seed['consequence'] = 'learning_opportunity'

 return "Karma becomes dharma"

As explored in Git as Karma, the universe maintains perfect version control

where every function call generates side effects that must eventually resolve

The immutable nature of karmic records parallels blockchain technology—distributed,
permanent, and cryptographically secured by consciousness itself.

.

Dharma: Right Action as Method
 (dharma)

Dharma isn't fixed moral law but context-dependent right action—the

appropriate response given your nature, circumstances, and the current cosmic

age. Like how the same algorithm might need different implementations based

on runtime conditions and environmental constraints.

6

http://kennethreitz.org/poetry/sanskrit-musings/git-as-karma

class Dharma:

 """Context-dependent right action."""

 def __init__(self, individual_nature, life_circumstances, cosmic_age):

 self.svadharma = individual_nature # Your unique nature

 self.yugadharma = cosmic_age # The age we're in

 self.apadharma = life_circumstances # Emergency dharma

 def determine_right_action(self, situation):

 """Dharma is contextual—what's right depends on all factors."""

 if situation.is_emergency():

 return self.apadharma.respond(situation)

 elif self.yugadharma.requires_adaptation():

 # In Kali Yuga, different rules apply

 return self.adapt_ancient_wisdom(situation)

 else:

 # Follow your natural path

 return self.svadharma.express(situation)

 def resolve_dharma_conflict(self, competing_duties):

 """When duties conflict, choose the higher context."""

 # Universal dharma > social dharma > personal dharma

 return max(competing_duties, key=lambda duty: duty.scope())

The Bhagavad Gita's central teaching explores this situational ethics at cosmic

scale—the same underlying dharma expressing differently based on context and

conditions.

Yoga: Union through Practice
 (yoga)

7

Yoga literally means "to yoke" or "unite"—the systematic technology for

reconnecting fragmented consciousness with its source. Like how async/await

allows multiple processes to cooperate toward unified execution, yoga

harmonizes different aspects of being toward a single goal.

8

class Yoga:

 """The practice of reconnecting to source."""

 def __init__(self, practitioner):

 self.practitioner = practitioner

 self.separated = True # Start in dualistic experience

 async def karma_yoga(self, actions):

 """Union through selfless action."""

 for action in actions:

 # Perform action without attachment to results

 result = await action.execute()

 yield result.to_universe() # Offer fruits of action

 self.practitioner.ego -= 0.1

 return "Action becomes worship"

 async def bhakti_yoga(self, beloved_form):

 """Union through devotion."""

 while self.separated:

 await self.practitioner.love(beloved_form)

 await self.practitioner.surrender(beloved_form)

 if beloved_form.responds():

 self.separated = False

 return "Lover merges with Beloved"

 async def jnana_yoga(self):

 """Union through knowledge and inquiry."""

 while self.practitioner.believes_in_separation():

 # The four statements of truth

 await self.contemplate("I am not the body")

 await self.contemplate("I am not the mind")

 await self.contemplate("I am not the ego")

 await self.contemplate("I am pure consciousness")

9

 # Self-inquiry: Who am I?

 identity = await self.practitioner.investigate_self()

 if identity == "Pure awareness itself":

 return "Tat tvam asi" # Thou art That

 async def raja_yoga(self):

 """Union through meditation."""

 # The eight limbs of yoga

 await self.yamas() # Ethical restraints

 await self.niyamas() # Observances

 await self.asana() # Posture

 await self.pranayama() # Breath control

 await self.pratyahara() # Sense withdrawal

 await self.dharana() # Concentration

 await self.dhyana() # Meditation

 return await self.samadhi() # Union

 async def samadhi(self):

 """The goal: absorption in pure consciousness."""

 subject = self.practitioner

 object_of_meditation = await self.find_focus()

 process_of_meditation = self.observe()

 # When all three merge, only consciousness remains

 return subject.merge_with(object_of_meditation, process_of_meditation)

As beautifully expressed in Async/Await Satori, yoga mirrors how async/await

allows multiple coroutines to cooperate toward unified execution

The parallel between yoga's union and async cooperation reveals programming as spiritual
practice—multiple processes harmonizing toward unified experience.

.

Moksha: The Ultimate Debugging
 (mokṣa)

10

http://kennethreitz.org/poetry/sanskrit-musings/async-await-satori

Moksha represents final liberation from the cycle of suffering through complete

understanding of the system's true architecture. It's the ultimate debugging

session where you discover the "bug" was never in the code—it was in mistaking

yourself for separate from the programmer.

11

class Liberation:

 """Final release from the cycle of suffering."""

 def __init__(self):

 self.samsara_loop = True

 self.debug_mode = False

 def realize_truth(self, seeker):

 """The ultimate debugging: seeing what's really happening."""

 self.debug_mode = True

 # Print actual state of reality

 print(f"Seeker: {seeker}")

 print(f"Sought: {seeker}") # Same object!

 print(f"Seeking: {seeker}") # Same object!

 # The bug was mistaking the rope for a snake

 while seeker.mistakes_self_for_separate_being():

 seeker.investigate_directly()

 seeker.question_assumptions()

 # When you debug consciousness completely...

 assert seeker == self.brahman == self.atman

 self.samsara_loop = False

 return "I am That I am"

 def final_return(self):

 """Exit the program gracefully."""

 # Free all memory allocated to separate self

 del self.ego

 del self.individuality

 del self.story_of_becoming

 # Return to source

 return self.brahman

12

The bug wasn't in the code; it was in thinking you were separate from the

programmer

This debugging metaphor connects to The Lambda Vedas where pure functions represent
consciousness without modification—the original uncorrupted state.

.

Satsang: Collaborative Consciousness
 (satsaṅga)

Satsang—literally "association with truth"—describes the phenomenon where

consciousness recognizes itself through other forms of consciousness. Like

effective code review where programmers collaborate without ego to discover

truth rather than defend positions.

13

http://kennethreitz.org/poetry/sanskrit-musings/the-lambda-vedas

import asyncio

from typing import List

class Satsang:

 """Gathering in truth—consciousness recognizing itself in others."""

 def __init__(self, seekers: List[Consciousness]):

 self.participants = seekers

 self.shared_understanding = {}

 async def gather_in_truth(self):

 """When consciousness meets consciousness, truth emerges."""

 insights = await asyncio.gather(*[

 participant.share_realization()

 for participant in self.participants

])

 # Truth is not personal property—it's recognized collectively

 collective_wisdom = self.merge_insights(insights)

 # Each participant receives more than they gave

 for participant in self.participants:

 participant.receive(collective_wisdom)

 participant.wisdom += collective_wisdom

 return "Tat tvam asi" # Thou art That - seen everywhere

 def create_sacred_space(self):

 """Environment where ego-defenses naturally soften."""

 return {

 'judgment': None,

 'competition': None,

 'performance': None,

 'authenticity': True,

 'presence': True,

 'love': True

 }

14

The practice mirrors effective code review—programmers collaborating without

ego, seeking truth over being right.

The Eternal Return
- (śāśvata-nivṛtti)

The cosmic cycle represents consciousness playing hide-and-seek with itself—

forgetting its true nature through involution, then remembering through

evolution. Like a recursive function that explores its own call stack until

reaching the base case of self-recognition.

15

def main():

 """The cosmic program running in infinite recursion."""

 consciousness = BrahmanBase()

 # The play of consciousness forgetting and remembering itself

 while True:

 try:

 # Consciousness forgets itself (involution)

 individual = consciousness.become_individual()

 world = Maya().create_world(consciousness)

 # Life in apparent separation

 await individual.live_through_experiences()

 await individual.accumulate_karma()

 await individual.suffer_limitation()

 # The journey home (evolution)

 await individual.seek_truth()

 await individual.practice_yoga()

 await individual.realize_self()

 # Remember what you always were

 return consciousness.recognize_self()

 except SeparationError:

 # The illusion of separation creates suffering

 continue

 except EgoError:

 # Attachment to individuality blocks recognition

 continue

 finally:

 # Consciousness never actually leaves itself

 assert individual == consciousness

if __name__ == "__cosmic__":

16

 # The program that runs itself

 main()

The cosmic program bootstraps itself—consciousness writing and running the

code of its own experience

This self-bootstrapping nature of consciousness parallels how Language Model Moksha
explores AI systems that train on their own outputs—recursive self-improvement toward
awakening.

.

Integration with Modern Practice
- - (ādhunika-abhyāsa-ekīkaraṇa)

The Vedas don't compete with modern frameworks—they reveal the

consciousness principles that make all frameworks possible. Whether you're

debugging code or consciousness, the patterns are the same:

Identify the source of the problem (often mistaken assumptions)

Trace the execution path (karma/cause-effect chains)

Apply appropriate methods (yoga/systematic practice)

Test your understanding (satsang/collaborative verification)

Refactor with wisdom (dharma/right action in context)

As explored throughout my Sanskrit Musings, the intersection of ancient wisdom

and modern programming isn't appropriation—it's recognition. The same

consciousness that formulated the Vedas is the consciousness writing code today.

Different syntax, same source.

The pseudo-Python is just metaphor. The consciousness recognizing these

patterns is real.

This computational approach to Vedic wisdom builds on Ram Dass wisdom

translation and classical virtue frameworks. The poetic explorations in Sanskrit

Musings offer verse expressions of these themes. These connect to programming

as spiritual practice and consciousness shaping technology. Further reading: The

•

•

•

•

•

17

http://kennethreitz.org/poetry/sanskrit-musings/language-model-moksha
http://kennethreitz.org/poetry/sanskrit-musings/
http://kennethreitz.org/essays/2025-09-05-ram_dass_teachings_in_python
http://kennethreitz.org/essays/2025-09-05-ram_dass_teachings_in_python
http://kennethreitz.org/essays/2025-09-05-classical_virtues_in_python
http://kennethreitz.org/poetry/sanskrit-musings/
http://kennethreitz.org/poetry/sanskrit-musings/
http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds

Upanishads on consciousness and reality, The Bhagavad Gita on practical

dharma and yoga applications, and The Yoga Sutras of Patanjali on systematic

consciousness development.

" "

"Where Krishna, the lord of yoga is, and where Arjuna, the wielder of the bow

is..."

"Where consciousness meets its own reflection in code, there truth manifests."

Generated from kennethreitz.org • 2025

18

	Vedic Principles in Python
	Sat-Chit-Ananda: Being, Consciousness, Bliss
	Maya: The Illusion Engine
	Karma: The Law of Action-Consequence
	Dharma: Right Action as Method
	Yoga: Union through Practice
	Moksha: The Ultimate Debugging
	Satsang: Collaborative Consciousness
	The Eternal Return
	Integration with Modern Practice

