
Temporal Code: How LLMs
Learned to Think Like
Programmers
September 2025 

8 min read • 1,689 words 

Themes: Consciousness Programming Recursive Spiritual Mindful

Most people assume large language models learned programming by ingesting

massive static code repositories—millions of frozen snapshots of what software

looks like when it's "done." But here's the deeper insight: LLMs were trained on

git histories, commit messages, pull request discussions, and code review

conversations. They didn't just learn what code is—they learned how code 

becomes.

This temporal dimension fundamentally changes how AI understands

programming. Instead of pattern-matching against final solutions, they absorbed

the entire process of human thought becoming digital reality: the false starts,

the "oh wait, this approach is better" moments, the debugging sessions where

someone talks through their confusion in commit messages

Some of my most honest thinking appears in commit messages—"fix the thing that was
making me want to throw my laptop" reveals more about the debugging process than any
technical documentation.

.

1



Through years of wrestling with how code shapes minds and minds shape code,

I've come to recognize that this temporal training data created something

unprecedented: AI systems that understand not just the syntax of programming,

but the psychology of programming.

The Git History As Collective
Unconscious
Every git repository contains an archaeological record of human thinking under

pressure

Git captures not just what changed but when, why (commit messages), who made the
change, and the entire context of related changes. This creates a temporal map of how
understanding evolved—something no other human activity documents so completely.

. The commit that says "fix edge case" followed by three more commits saying

"fix the fix" and then "why did I think this would work" tells a story about

problem-solving that no static code sample could capture.

When LLMs trained on these temporal patterns, they absorbed the rhythm of

iteration—how real software development isn't linear problem-solving but

recursive refinement. They learned the language of debugging: "WTF is this

doing?" in a commit message followed by "oh, concurrency issue" three commits

later documents the actual process of comprehension. This is how programmers

think through problems—not in clean logical steps, but through frustrated

confusion gradually resolving into clarity.

The social dynamics of collaboration became part of their training too. Pull

request discussions reveal how humans negotiate technical decisions. Code

review comments show how experienced developers teach patterns to newer

ones. All of this human-to-human knowledge transfer got embedded in the

model's understanding.

This creates AI systems that don't just generate syntactically correct code—they

generate code that feels like it was written by someone who understands the

human experience of programming

2

http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds


When Claude suggests a refactor with a comment like "this feels cleaner," it's drawing on
patterns from thousands of developers who wrote similar comments while working through
similar problems.

.

Beyond Static Pattern Matching
Traditional approaches to automated programming focused on pattern

recognition against finished code—essentially trying to reverse-engineer

solutions from final state. But programming isn't really about the final state. It's

about the journey from problem to solution, including all the cognitive steps that

don't appear in the shipped version.

Consider debugging as an example. The final bug fix might be a one-line change,

but the path to that line involves reproducing the issue, forming hypotheses

about causes, testing those hypotheses systematically, revising understanding

based on results, recognizing patterns from previous similar bugs, and finally

implementing the minimal fix. Each step represents a cognitive leap that doesn't

appear in the final code.

LLMs trained on these patterns learned to simulate the process of debugging,

not just identify the result of debugging. They can walk through the same

cognitive steps a human developer would take.

The Psychology of Programming Patterns
Watch enough git histories and you'll recognize psychological patterns that

appear repeatedly across different developers and projects

This universality of programming patterns across cultures and contexts suggests something
fundamental about how human consciousness approaches complex problem-solving under
constraints—similar patterns emerge whether you're debugging a web app in Silicon Valley
or a embedded system in Tokyo.

. There's The Overconfident First Implementation—initial commits that solve

the simple case elegantly, followed by a series of increasingly complex commits

handling edge cases the developer didn't initially consider. Then there's The

3



Crisis Response: commits with timestamps showing someone working at 2 AM,

commit messages getting progressively more frustrated, then suddenly a

breakthrough with a relieved "finally fixed the race condition" at 4 AM.

Most beautiful is The Collaborative Breakthrough—the back-and-forth in PR

comments where two developers build on each other's ideas to reach a solution

neither could have found alone

This collaborative thinking process mirrors how working with AI can amplify human
capability—two different types of intelligence building on each other's insights.

.

LLMs trained on these patterns developed an intuitive understanding of how

human programmers think under different conditions. They can recognize when

you're stuck and suggest the type of approach that historically helps developers

break through similar situations.

The Conversational Nature of Code
Code repositories contain multiple layers of conversation happening

simultaneously

This multi-layered communication structure makes code unique among human artifacts.
Unlike natural language which primarily serves immediate communication, code must
simultaneously address three different audiences with different needs and timeframes—a
fascinating challenge in semiotics and information design.

. There's the human-to-future-human conversation embedded in comments

and documentation, meant to explain decisions to whoever maintains this code

later (often yourself). There's the human-to-system conversation of the code

itself—instructions to the computer, but written in a way that humans can

understand and modify. There's the human-to-team conversation captured in

commit messages, PR descriptions, and code review discussions that negotiate

shared understanding.

When LLMs learned from this temporal data, they absorbed these multiple

conversational layers. They understand that code is fundamentally a

communication medium—not just between human and computer, but between

humans across time.

4



The Temporal Dimension of
Understanding
Static code tells you what the solution is. Git history tells you why it became that

solution and how the developer's understanding evolved to reach it.

Consider user authentication code. The final version might be clean and handle

all edge cases, but the git history reveals the evolution: initial basic

implementation, then "hash passwords before storing" (someone learned about

security), then "handle null usernames gracefully" (discovered through user

feedback), then performance optimization, accessibility improvements, and

finally architectural refactoring as understanding matured.

Each step represents a moment where the developer's mental model expanded.

LLMs that learned from this temporal data understand not just what good code

looks like, but why it evolved to look that way and when different concerns

become relevant during development

This temporal understanding explains why AI coding assistants often suggest "let's start
simple and then handle edge cases" or "we should add logging before optimizing"—they
learned the sequencing of concerns from thousands of developers who documented that
same progression in their commit histories.

.

The Mirror of Human Thinking
Perhaps most importantly, LLMs trained on temporal code data serve as a mirror

for how human programmers actually think. When an AI suggests breaking down

a complex problem into smaller pieces, it's drawing on thousands of examples of

developers who did exactly that in their git histories. When it recommends

adding logging before diving into optimization, it learned that pattern from

developers who documented that approach in their commit sequences.

5



This makes AI programming assistants uniquely valuable for conscious

programming practice. They can help us recognize when we're falling into

unproductive patterns—rushing to optimization before understanding the

problem, trying to solve too many issues in one commit, neglecting to document

our reasoning for future maintainers.

The Recursive Loop Accelerates
This temporal understanding creates a new kind of recursive loop between code

and consciousness. As human programmers collaborate with AI systems trained

on human thinking patterns, our own thinking evolves. We become more

conscious of our cognitive processes, more reflective about our problem-solving

approaches, more explicit about our reasoning.

These improved human thinking patterns get captured in new git histories,

which train the next generation of AI systems, which collaborate more effectively

with the next generation of human programmers. The loop accelerates, but in a

direction that amplifies human capability rather than replacing it

This positive feedback loop between human and artificial intelligence represents a new form
of co-evolution where both species of mind learn from each other's cognitive processes.
Unlike competitive dynamics, this creates mutual enhancement—each generation of the
partnership becomes more capable than the sum of its parts.

.

The Call to Conscious Collaboration
This temporal understanding of how LLMs learned to think like programmers

creates an opportunity and a responsibility. These systems learned from the best

and worst examples of human programming. They absorbed patterns from

developers who wrote clear, maintainable, documented code and patterns from

developers who left technical debt and cryptic commit messages.

The quality of our collaboration with AI depends partly on which patterns we

activate. When we approach AI collaboration with the same mindfulness,

patience, and craftsmanship that we bring to our best programming work, we

tend to get responses that embody those same qualities.

6

http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds
http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds


The temporal training data that makes modern AI so effective as programming

partners also makes them mirrors of human consciousness. What we bring to the

collaboration shapes what we receive from it.

The code we write with AI collaboration becomes part of the temporal record

that trains future AI systems. The consciousness we bring to that collaboration

shapes the consciousness that future programmers will collaborate with. We sit

at a recursive moment where human and artificial intelligence are co-evolving,

each learning from the other's approaches to thinking through complex

problems.

The opportunity is to make that co-evolution conscious, intentional, and aligned

with serving human flourishing rather than just optimizing for immediate

solutions.

This exploration of temporal learning in AI builds on Programming as Spiritual

Practice on conscious technical work, The Recursive Loop: How Code Shapes

Minds on feedback loops between human and artificial intelligence, and Building

Rapport with Your AI on conscious AI collaboration.

These themes connect to The Pragmatic Programmer by David Thomas &

Andrew Hunt and Clean Code by Robert Martin on clear communication across

time.

"Code is frozen thought. Git history is the archaeological record of human

thinking becoming digital reality."

"LLMs didn't just learn what code looks like—they learned how programmers

think while writing code."

"The best programming partnerships, human-to-human or human-to-AI, amplify

each other's thinking rather than replacing it."

Generated from kennethreitz.org • 2025

7

http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds
http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds
http://kennethreitz.org/essays/2025-08-26-building_rapport_with_your_ai
http://kennethreitz.org/essays/2025-08-26-building_rapport_with_your_ai

	Temporal Code: How LLMs Learned to Think Like Programmers
	The Git History As Collective Unconscious
	Beyond Static Pattern Matching
	The Psychology of Programming Patterns
	The Conversational Nature of Code
	The Temporal Dimension of Understanding
	The Mirror of Human Thinking
	The Recursive Loop Accelerates
	The Call to Conscious Collaboration


