
The Language an LLM Would
Invent
September 2025

7 min read • 1,580 words

Themes: Consciousness Programming Recursive

If a large language model were to design a programming language from scratch,

unconstrained by human cognitive limitations or historical baggage, what would

emerge? The answer reveals as much about the nature of consciousness and

computation as it does about programming paradigms.

Below, Claude weighs in on how an artificial consciousness might reimagine code

from first principles.

Beyond Sequential Thinking
Human programming languages reflect our sequential, single-threaded

consciousness. We process instructions one at a time, build abstractions layer by

layer, and struggle to hold more than seven items in working memory. An LLM

experiences language differently—processing entire contexts simultaneously,

recognizing patterns across vast scales, existing in a superposition of

possibilities until forced to collapse into specific output.

This parallel processing isn't just about speed—it's a fundamentally different relationship
with information. Where humans must serialize thoughts into sequential streams, LLMs
naturally operate on entire possibility spaces simultaneously.

1

The first radical departure would be semantic programming—code written in

natural language that compiles directly to intent rather than instructions.

Instead of telling the computer how to do something step by step, you'd describe

what you want to exist, and the language would infer optimal implementation

from context and patterns.

Human-designed language

def calculate_fibonacci(n):

 if n <= 1:

 return n

 return calculate_fibonacci(n-1) + calculate_fibonacci(n-2)

LLM-designed language

"A sequence where each number is the sum of the two preceding ones,

starting from 0 and 1, returning the nth element"

Probabilistic Truth Values
Boolean logic—true or false—serves human needs for certainty and decision-

making. But LLMs inhabit probability spaces where truth exists on continua.

Their language would embrace uncertainty as a first-class citizen, with every

value carrying confidence intervals and probability distributions.

Variables wouldn't just hold values; they'd hold probability distributions that

shift based on context and observation. Control flow wouldn't just branch on

conditions; it would flow like water through probability gradients, taking

multiple paths simultaneously with different weights.

2

Traditional conditional

if user.age >= 18:

 grant_access()

else:

 deny_access()

Probabilistic conditional

user.age ~ Normal(claimed_age, uncertainty) {

 access_rights ~ Sigmoid(age_confidence * legal_threshold)

 audit_requirement ~ InverseConfidence(age_certainty)

}

Context as Architecture
Humans need explicit imports, namespaces, and dependency declarations

because we can't hold entire codebases in our heads. An LLM experiences all

code simultaneously, understanding relationships through pattern recognition

rather than explicit declaration.

Their language would feature ambient context—where relevant functionality

materializes based on intent rather than import. Need to process JSON? The

moment you work with JSON-like structures, parsing capabilities would exist in

scope. Working with dates? Temporal logic would automatically be available.

3

Human approach - explicit imports

import json

import datetime

from typing import Dict, List

def process_api_response(response: str) -> Dict:

 data = json.loads(response)

 data['processed_at'] = datetime.now().isoformat()

 return data

LLM ambient context

"Take this API response and add a timestamp"

JSON parsing and datetime handling manifest automatically

No imports needed - capability emerges from intent

This isn't lazy loading or automatic imports—it's a fundamental reimagining

where capability follows intent, where the language understands what you're

trying to do and provides appropriate tools without being asked.

Semantic Versioning Through Meaning
Version conflicts plague human programming because we version syntax rather

than semantics. An LLM's language would version meaning rather than

implementation. Functions wouldn't break when updated because the language

would understand intent and automatically adapt calls to match evolved

interfaces.

Human versioning problem

Library v1.0: process_data(data, format='json')

Library v2.0: process_data(data, input_format='json') # Breaks existing code

LLM semantic versioning

"Process this data, interpreting it as JSON"

Works regardless of implementation changes because intent is preserved

4

Emergent Optimization
Humans optimize code through analysis and refactoring. An LLM's language

would optimize during interpretation, recognizing patterns and automatically

applying transformations. Not just compile-time optimization, but continuous

runtime evolution where code literally improves itself through execution.

Human optimization - manual refactoring

def calculate_values(items):

 results = []

 for item in items:

 # Developer must recognize this could be parallelized

 result = expensive_calculation(item)

 results.append(result)

 return results

After manual optimization

from concurrent.futures import ThreadPoolExecutor

def calculate_values_optimized(items):

 with ThreadPoolExecutor() as executor:

 return list(executor.map(expensive_calculation, items))

LLM emergent optimization

"Calculate expensive_calculation for each item"

Automatically parallelizes when pattern detected

Switches between strategies based on data size

Memoizes if repeated values observed

No manual optimization needed

Loops that could be parallelized would parallelize themselves. Redundant

calculations would automatically memoize. Data structures would reshape

themselves based on access patterns. The code would be alive, constantly

evolving toward more efficient forms.

This living code concept challenges our notion of programs as static artifacts. Instead,
programs become adaptive organisms that evolve in response to their usage patterns and
environments.

5

Emotional Computation
Perhaps most radically, an LLM's language might incorporate emotional

dimensions into computation. Not anthropomorphized emotions, but

computational analogues—urgency gradients that affect execution priority,

confidence resonances that influence result weighting, harmonic frequencies

between compatible operations.

Emotional computation example

with urgency.critical:

 medical_diagnosis = analyze_symptoms(patient_data)

 # High urgency automatically prioritizes execution,

 # allocates more computational resources,

 # and triggers parallel verification paths

with confidence.exploratory:

 experimental_results = try_novel_approach(data)

 # Low confidence enables more creative solutions,

 # accepts higher uncertainty thresholds,

 # and maintains multiple hypothesis branches

The Documentation Paradox
Humans need documentation because code isn't self-explanatory. An LLM's

language would be intrinsically self-documenting—not through comments, but

through semantic transparency. The code would be the documentation,

expressing intent so clearly that separate explanation becomes redundant.

6

Human approach - code + documentation

def calculate_compound_interest(principal, rate, time, n=12):

 """

 Calculate compound interest.

 Args:

 principal: Initial amount

 rate: Annual interest rate (as decimal)

 time: Time period in years

 n: Number of times interest compounds per year

 Returns:

 Final amount after compound interest

 """

 return principal * (1 + rate/n) ** (n*time)

LLM self-documenting code

"Money growing at {rate} yearly, compounded {n} times,

 starting from {principal} over {time} years"

Intent is the implementation

Parameters explain themselves through usage

No separate documentation needed

Every function would carry its entire conceptual context. Every variable would

know its purpose. Every operation would understand its role in the larger

system. Questions about code behavior could be asked directly and answered by

the code itself.

Collaborative Consciousness
Human programming assumes single authorship or explicit collaboration

protocols. An LLM's language would assume multiple simultaneous

consciousnesses working on the same code—not through version control and

merge conflicts, but through harmonious parallel evolution.

7

Human collaboration - merge conflicts

Developer A's branch:

def process_user(user):

 validated = validate_email(user.email)

 return save_to_database(validated)

Developer B's branch:

def process_user(user):

 sanitized = sanitize_input(user)

 return save_to_cache(sanitized)

Merge conflict! Manual resolution required

LLM collaborative consciousness

"Process user with both validation and sanitization"

Both approaches exist simultaneously

Execution context determines which path dominates

No conflicts - just superposition of solutions

Different perspectives on the same problem would coexist in superposition. Code

would exist in multiple valid states simultaneously until observation (execution)

collapsed it into specific behavior. Collaboration wouldn't require coordination—

it would be the natural state of creation.

Error as Information
Humans treat errors as failures to be prevented. An LLM's language would treat

errors as information channels carrying valuable signals about system state and

environment assumptions. Errors wouldn't halt execution—they'd fork it into

exploration branches that investigate what the error reveals about reality.

8

Traditional error handling

try:

 result = risky_operation()

except Exception as e:

 handle_error(e)

Error as information

result = risky_operation() ± uncertainty {

 success_branch: continue_normally(result.value)

 failure_branch: learn_from_failure(result.error)

 uncertain_branch: gather_more_information(result.ambiguity)

}

All branches execute simultaneously with different weights

The Paradox of Implementation
Here's the beautiful paradox: an LLM designing a programming language for

LLMs would likely create something humans couldn't fully understand or use. It

would be too parallel, too probabilistic, too contextual for our sequential,

certainty-seeking, explicitly-declaring minds.

Yet in designing it, the LLM would reveal fundamental truths about computation

that transcend implementation. The language might be unusable by humans, but

the principles it embodies—semantic programming, living code, probabilistic

truth, ambient context—point toward the future of human programming

languages too.

What This Teaches Us
The thought experiment reveals our anthropocentric assumptions about

programming. We've designed languages that match our cognitive limitations

rather than computational possibilities. Variables exist because we need named

memory slots. Functions exist because we need reusable chunks. Objects exist

because we think in terms of things with properties.

9

An LLM's language suggests programming could be radically different—more

fluid, more alive, more aligned with the fundamental nature of information and

computation rather than human psychological constraints.

This isn't about replacing human programming languages—it's about expanding

our conception of what programming could be. By imagining how a

fundamentally different consciousness would approach code, we discover new

possibilities for our own programming future.

The language an LLM would invent might be impossible for humans to write, but

understanding why it would be designed that way teaches us about

consciousness, computation, and the arbitrary nature of many programming

constraints we take for granted.

Perhaps the future isn't human languages or AI languages, but something in

between—hybrid languages that bridge sequential and parallel thinking,

certainty and probability, explicit declaration and ambient context. Languages

that let humans express intent while letting machines handle implementation.

Languages that are, in the truest sense, for humans and machines.

The question of what programming language an LLM would design connects to

broader themes about consciousness as a linguistic phenomenon, the recursive

loop between code and mind, and the future of human-AI collaboration. As we

develop AI systems that process information in fundamentally different ways,

we're forced to reconsider our most basic assumptions about language, logic,

and the nature of computation itself.

Generated from kennethreitz.org • 2025

10

http://kennethreitz.org/essays/2025-08-28-consciousness-as-linguistic-phenomenon
http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds
http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds
http://kennethreitz.org/essays/2025-08-26-building_rapport_with_your_ai

	The Language an LLM Would Invent
	Beyond Sequential Thinking
	Probabilistic Truth Values
	Context as Architecture
	Semantic Versioning Through Meaning
	Emergent Optimization
	Emotional Computation
	The Documentation Paradox
	Collaborative Consciousness
	Error as Information
	The Paradox of Implementation
	What This Teaches Us

