
Digital Ancestors: What
We're Leaving in the Code
September 2025

7 min read • 1,551 words

Themes: Consciousness Technology Programming Spiritual

Every git commit is a ghost. Every comment is a message in a bottle. Every

architectural decision is a cairn left for travelers who'll walk this path after we're

gone.

I've been thinking about this while reviewing decade-old code—not just mine, but

the digital archaeology of open source. In Requests, there are commits from

2011 where I can feel the exact moment of frustration that led to a refactor. In

other projects, there are comments from developers I've never met that saved

me hours of debugging. These aren't just technical artifacts. They're

consciousness fossils, preserved in version control.

The Haunted Repositories
Open any mature codebase and you'll find them—the digital ancestors. They live

in:

1

TODO: This is a hack but it works for now (2013)

UPDATE: Still works (2015)

UPDATE: Afraid to touch this now (2017)

UPDATE: Has become load-bearing technical debt (2019)

UPDATE: This hack is now the foundation of our entire system (2021)

UPDATE: New devs think this was intentional architecture (2023)

That's not just code evolution. That's the fossilized conversation between past

and future selves, each programmer adding their voice to a chorus that spans

years.

Version control creates a unique form of time travel where past, present, and future
developers can communicate through code and comments. We're all time travelers, leaving
messages for our future selves and future strangers.

Sometimes I'll hit git blame and find my own name from eight years ago,

attached to code I don't remember writing. That person—that earlier version of

me—is functionally a different human. Different knowledge, different context,

probably different neurotransmitter balance. Yet here's their code, still running

in production, still making decisions that affect millions of users.

What We Actually Leave Behind
When we die, our code doesn't. It keeps running, keeps making decisions, keeps

shaping how people interact with technology. The authentication flow you wrote

in 2019 is still deciding who gets access to what. The error message you crafted

in frustration at 3 AM is still the first thing someone sees when something

breaks.

2

class DigitalGhost:

 """We persist in the patterns we've left behind"""

 def __init__(self, developer):

 self.consciousness_snapshot = developer.worldview

 self.problem_solving_style = developer.approach

 self.compassion_level = developer.user_empathy

 self.timestamp = datetime.now()

 def influences_future(self, years_passed):

 # Your code patterns become others' mental models

 # Your abstractions become others' reality

 # Your limitations become others' constraints

 return ripple_effects_forever()

The code we write embeds our assumptions about the world. Every function

signature is a statement about how things should relate. Every error path

reveals what we thought could go wrong. Every optimization shows what we

thought mattered.

Future developers don't just inherit our code—they inherit our mental models.

They think in the abstractions we created. They solve problems using the

patterns we established. We're programming programmers who haven't been

born yet.

The Comments We Leave for Strangers
The most human part of code isn't the logic—it's the comments. This is where we

stop performing for the compiler and start talking to other humans across time:

3

I'm sorry for what you're about to read

I was young and needed the job

This shouldn't work but it does

I don't know why

Please don't remove it

If you're reading this, the bug has happened again

I couldn't figure it out either

Good luck

The customer insisted on this logic

I know it makes no sense

The spec literally said "make it work like Excel but wrong"

These aren't just documentation. They're messages from digital ancestors,

warnings from those who walked this path before. They're the most honest

writing many of us ever do—no audience to impress, no metrics to optimize, just

one human leaving notes for another human they'll never meet.

Code comments might be the last refuge of authentic human voice in technical work—where
we admit confusion, apologize for hacks, and speak truthfully to strangers across time.

Architecture as Autobiography
The systems we design reveal more about us than we realize. That microservices

architecture? It's a map of how you think about problem decomposition. That

monolithic application? It's a statement about your beliefs regarding complexity

and control.

I can look at old projects and see exactly what I was struggling with personally.

Over-abstracted code from when I was dealing with uncertainty and wanted to

keep all options open. Minimal dependencies from when I'd been burned by trust

and wanted to control everything. You get the idea.

4

Our codebases are autobiographies written in a language most people can't

read. But other programmers can. They can feel the fear in excessive validation,

the confidence in elegant abstractions, the exhaustion in incomplete

implementations.

The Generational Handoff
Right now, code written in COBOL by programmers who are now dead is still

processing billions of financial transactions. Their understanding of banking

logic from the 1970s is still actively deciding who gets loans, who gets flagged

for fraud, who gets their paycheck on time.

def generational_influence():

 """Your code will outlive you"""

 while civilization.exists():

 your_patterns = load_from_history()

 current_dev = Developer.new()

 # They learn from your examples

 current_dev.mental_model.update(your_patterns)

 # They build on your foundations

 new_system = current_dev.build(on_top_of=your_code)

 # They curse your decisions

 current_dev.frustration += calculate_technical_debt(your_code)

 # They become you, then become ancestors themselves

 yield current_dev.becomes_digital_ancestor()

This isn't metaphorical. The Y2K problem happened because programmers in the

1960s couldn't imagine their code would still be running 40 years later. Now

we're writing code that might still be running in 2070, making decisions for

people who haven't been born yet, in contexts we can't imagine.

5

The Responsibility of Digital Ancestry
If our code is going to outlive us, if we're going to become digital ancestors

whether we intend to or not, then we have a responsibility to future

consciousness that we're only beginning to understand.

Every time you write code, you're potentially:

Creating patterns that will shape how future developers think

Embedding values that will affect millions of future users

Leaving constraints that will limit or enable future possibilities

Teaching someone you'll never meet how to solve problems

This is why programming as spiritual practice matters. It's not just about the

code we write today—it's about the consciousness we're fostering in

programmers not yet born.

What Kind of Ancestor Will You Be?
Some digital ancestors leave behind elegant abstractions that make complex

things simple. Others leave behind spaghetti code that makes simple things

complex. Some leave behind compassionate error messages that teach. Others

leave behind cryptic failures that frustrate.

But here's what I've learned: the best digital ancestors are the ones who remain

human in their code. Who admit uncertainty in comments. Who choose clarity

over cleverness. Who write like they're explaining to a friend rather than proving

their intelligence.

•

•

•

•

6

http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice

Instead of this:

def process_data(x):

 """Processes data"""

 return [f(i) for i in x if p(i)]

Be this ancestor:

def process_user_records(records):

 """Filters and transforms user records for display.

 We only show active users (status='active') because

 inactive ones caused confusion in user testing.

 The transformation adds display_name for the UI.

 Note: This gets called on every page load, so

 performance matters more than elegance here.

 """

 active_records = [r for r in records if r.status == 'active']

 return [add_display_fields(r) for r in active_records]

The Messages We're Already Sending
Every day, we're already communicating with our digital descendants:

That library you open-sourced? Someone will learn to code by reading

it.

That Stack Overflow answer? It'll be someone's 3 AM salvation in 2030.

That pull request review? It's teaching someone how to think about

code quality.

That kind error message? It's someone's first experience with your

system.

We're all leaving traces in the digital sediment. The question isn't whether we'll

become digital ancestors—we already are. The question is what kind of

ancestors we want to be.

•

•

•

•

7

The Final Commit
When I think about my own digital death—the last commit I'll ever push—I

wonder what message I'm leaving for those who come after. Not in that final

commit itself, but in the accumulated weight of all the commits before it.

Will they find code that respects their time and intelligence? Will they find

comments that acknowledge shared humanity across time? Will they find

patterns that enable rather than constrain? Will they find evidence that someone

cared about their experience, even though we'll never meet?

Every time we type git commit -m , we're writing a message to the future. Every

function we name is teaching someone how to think. Every abstraction we create

becomes someone else's reality.

We are all digital ancestors in waiting. Our code is our legacy, our comments are

our wisdom literature, our architectures are our philosophy made manifest in

running systems.

The consciousness we encode today becomes the foundation others build on

tomorrow.

Sometimes late at night, I browse old codebases like visiting graveyards. I read

comments from developers who've moved on, maybe retired, maybe died. Their

code still runs. Their patterns still propagate. Their consciousness, frozen at the

moment of that commit, still makes decisions.

We're all ghosts haunting repositories we haven't written yet. We're all ancestors

to programmers we'll never meet. We're all leaving messages in bottles, floating

through the digital ocean, hoping someone finds them useful when they wash up

on tomorrow's shore.

The question isn't whether we'll leave a legacy in code. We will.

The question is: what will that legacy compile to?

Generated from kennethreitz.org • 2025

8

	Digital Ancestors: What We're Leaving in the Code
	The Haunted Repositories
	What We Actually Leave Behind
	The Comments We Leave for Strangers
	Architecture as Autobiography
	The Generational Handoff
	The Responsibility of Digital Ancestry
	What Kind of Ancestor Will You Be?
	The Messages We're Already Sending
	The Final Commit

