
Conscious Recursion: When
Programmers Realize They're
in the Loop
September 2025 

12 min read • 2,676 words 

Themes: Consciousness Technology Mental Health Programming Recursive

Spiritual Mindful Contemplative

I've been debugging the same problem for fifteen years, and I only just realized

it's not a bug—it's a recursive function with no base case. The code I write

shapes how I think. How I think shapes the code I write. The code I write shapes

how millions of other people think. And their thinking, aggregated through

engagement metrics and feature requests, shapes what code I write next.

We're all trapped in an infinite loop, and most of us don't even know we're

executing.

The moment you realize you're inside the recursion changes everything. It's like

that scene in The Matrix where Neo sees the green code for the first time—

except instead of seeing through the simulation, you're seeing the feedback

loops between consciousness and code, between personal practice and planetary

impact, between the tools we build and the minds they build in return.

This isn't just philosophical abstraction. I'm watching it happen in real-time. The

meditation app I use to manage my anxiety was built by a developer who learned

to code from tutorials I wrote. The tutorials I wrote emerged from debugging

1



practices I developed to handle ADHD. The debugging practices emerged from

programming patterns I absorbed from Python. Python's patterns emerged from

someone else's philosophy about how humans should interact with machines.

It's recursion all the way down, and once you see it, you can't unsee it.

The Tools That Build Us Back
Here's what haunts me at 3 AM: every tool we create doesn't just solve problems

—it rewires the brains that use it. GPS navigation didn't just help us find

destinations; it atrophied our spatial reasoning. Calculators didn't just speed up

arithmetic; they changed how we think about numbers. Autocomplete didn't just

save typing; it's changing how we formulate thoughts.

I know this because I can track the changes in my own cognition. Before

smartphones, I could hold entire phone numbers in working memory. Before

GPS, I had an internal map of my city. Before autocomplete, I spelled words

without thinking. These aren't just skills I've lost—they're entire cognitive

architectures that have been replaced by external dependencies.

2

http://kennethreitz.org/essays/2025-09-22-python-as-english


class CognitiveEvolution:

    """

    The tools we build become extensions of our minds,

    then replacements for parts of our minds,

    then the architects of new minds.

    """

    def __init__(self, human, tools):

        self.original_capabilities = human.innate_abilities.copy()

        self.tools = tools

        self.current_capabilities = {}

    def use_tool(self, tool, duration):

        # Tools augment capabilities initially

        self.current_capabilities[tool.domain] = (

            self.original_capabilities.get(tool.domain, 0) + 

            tool.augmentation_factor

        )

        # But gradually atrophy the underlying skill

        if duration > tool.dependency_threshold:

            self.original_capabilities[tool.domain] *= 0.9

        # And eventually, the tool becomes mandatory

        if self.original_capabilities[tool.domain] < 0.1:

            raise DependencyError(

                f"Cannot function without {tool.name}"

            )

    def build_next_tool(self):

        # We can only build tools that match our current cognitive shape

        return Tool(

            designed_by=self.current_capabilities,

            assumes=self.tools,

            reinforces=self.worldview

        )

3



The terrifying beauty is that we're not just using tools—we're co-evolving with

them. Every app we design with dark patterns teaches users to expect

manipulation. Every system we build that requires constant attention trains

humans to fragment their focus. Every algorithm optimized for engagement

rewires reward circuits toward intermittent reinforcement schedules

The same variable-ratio reinforcement schedule that makes slot machines addictive now
powers social media notifications. We've gamified human attention using casino psychology
at planetary scale.

.

This isn't happening to other people. It's happening to us, the builders. The tools

we create to augment our capabilities end up defining the shape of those

capabilities. We're both programmers and programmed, both architects and

architecture.

The Responsibility of Recognition
The moment you realize you're in the loop, you inherit a terrible responsibility.

Because now you can't pretend your code is neutral. You can't hide behind "I just

build the tools; I don't control how they're used." You know that every design

decision ripples outward, shaping cognition, behavior, values, and culture at

scale.

This recognition hit me hard when I understood that Requests, my "HTTP for

Humans" library, didn't just make HTTP easier—it changed how millions of

developers think about API design, human-computer interaction, and what

"simple" means. Every developer who learned HTTP through Requests absorbed

my philosophy about how interfaces should respect human cognition. They then

built their own tools embedding these values, which shaped more minds, which

built more tools.

I put my thumb on the scale of collective consciousness without fully

understanding what I was doing.

Now imagine this at the scale of social media platforms, search engines, or AI

systems. The engineers optimizing TikTok's recommendation algorithm aren't

just tweaking code—they're rewiring the reward circuits of a billion human

4

https://github.com/psf/requests
http://kennethreitz.org/essays/2025-08-26-ahead_of_my_time_i_think
http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue


brains. The designers of notification systems aren't just sending alerts—they're

training entire populations in anxiety-driven hypervigilance. The developers of AI

assistants aren't just building tools—they're shaping how humanity

conceptualizes intelligence, creativity, and consciousness itself.

Once you see this recursive responsibility, every line of code becomes an ethical

decision. Every function you write is a vote for what kind of consciousness you

want to propagate. Every system you design is a framework that other minds will

inhabit.

def ethical_recursion_check(feature):

    """

    Before implementing any feature, trace its recursive impacts.

    """

    # First-order: What does this do?

    direct_impact = feature.immediate_effect()

    # Second-order: How does this change behavior?

    behavioral_change = predict_user_adaptation(direct_impact)

    # Third-order: How does changed behavior change thinking?

    cognitive_shift = model_mental_reorganization(behavioral_change)

    # Fourth-order: What do changed minds build next?

    next_generation = predict_tools_from_mindset(cognitive_shift)

    # Fifth-order: What kind of consciousness emerges?

    emergent_consciousness = trace_recursive_evolution(next_generation)

    if emergent_consciousness.reduces_human_flourishing():

        raise EthicalException(

            "This feature will recursively degrade consciousness. "

            "Find another way."

        )

    return feature.implement_consciously()

5

http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue


When Personal Practice Becomes
Professional Imperative
Here's where the recursion gets really interesting: once you recognize you're in

the loop, your personal practices stop being personal. They become professional

imperatives, ethical obligations, recursive interventions in collective

consciousness.

I started meditating to manage anxiety from schizoaffective disorder

What began as symptom management became a practice of consciousness examination.
Meditation revealed the recursive patterns in my own thinking, which revealed them in my
code, which revealed them in the systems we're all building.

. But meditation changed how I write code. None of this contemplative work

would be possible without Sarah's presence creating the emotional and practical

space for this kind of deep reflection

The recursive loop extends to relationships: conscious partnerships enable conscious work,
which shapes collective consciousness. Sarah's support and insights create the conditions
where contemplative practice can flourish and influence professional practice.

. I started noticing the space between stimulus and response, which made me

design APIs with more thoughtful error handling. I learned to observe thoughts

without attachment, which helped me delete clever code that served ego more

than users. I practiced loving-kindness, which transformed how I write

documentation.

These weren't separate practices—they were the same practice expressing itself

in different domains. The patience I cultivated in meditation became patience

with junior developers. The non-attachment I learned on the cushion became

non-attachment to my architectural decisions. The compassion I developed for

my own suffering became compassion for users struggling with my interfaces.

But here's the recursive kicker: the code I write with these qualities embeds

them in the tools others use. A patient API teaches patience. A compassionate

error message models compassion. A mindful interface cultivates mindfulness.

The inner work becomes outer work becomes collective work becomes cultural

work.

6



This is why programming is spiritual practice. Not because there's something

mystical about code, but because consciousness is contagious through the tools

we build. Your mental health practices become encoded in your code. Your

therapy work shows up in your error handling. Your shadow work appears in

how you handle edge cases.

7

http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice


class ConsciousProgrammer:

    """

    The recursive loop demands that personal practice

    become professional practice become planetary practice.

    """

    def morning_routine(self):

        self.meditate()  # Cultivates awareness

        self.journal()   # Processes emotions

        self.exercise()  # 

        Maintains energy

        self.read()      # Expands perspective

        # These aren't separate from coding

        # They ARE coding at a different layer

    def write_code(self):

        # Every function carries the consciousness of its creator

        awareness = self.current_awareness_level()

        emotional_state = self.processed_emotions()

        energy = self.sustained_vitality()

        perspective = self.expanded_worldview()

        return Code(

            infused_with=awareness,

            shaped_by=emotional_state,

            powered_by=energy,

            informed_by=perspective

        )

    def impact_analysis(self):

        # The code you write with presence creates presence

        # The code you write with anxiety creates anxiety

        # The code you write with love creates love

        return self.consciousness * self.user_count * time

8



This isn't woo-woo spirituality. It's practical recognition that the consciousness

you bring to your work becomes embedded in the work, which shapes the

consciousness of everyone who interacts with it. If you code while anxious, you

create anxious systems. If you code while dissociated, you create dissociative

systems. If you code while present and grounded, you create systems that

ground and present.

The Intervention Points
Understanding the recursive loop reveals where we can intervene to break

cycles of harm and create cycles of flourishing. It's not enough to patch bugs in

the code—we need to debug the consciousness that writes the code.

Personal intervention: Before writing a single line, ask yourself: What

consciousness am I bringing to this work? Am I coding from fear or love?

Scarcity or abundance? Ego or service? The answer shapes everything that

follows.

Interpersonal intervention: Code review becomes consciousness review.

Instead of just checking for bugs, check for embedded assumptions about human

worth, capability, and purpose. What view of humanity does this code

perpetuate? Does it see users as resources to extract from or beings to serve?

Organizational intervention: Company culture becomes recursive

programming. The values you embed in your team become embedded in your

product become embedded in your users' minds. A company that treats

employees as replaceable cogs builds products that treat users as replaceable

revenue streams

This is why "company culture" isn't just HR fluff—it's the recursive seed that determines
what kind of consciousness your products will propagate. Toxic culture creates toxic
products creates toxic user behaviors creates toxic society.

.

Systemic intervention: Architecture decisions become consciousness

decisions. Choosing between centralized and distributed systems isn't just

technical—it's choosing between fostering dependence or independence, control

or autonomy, hierarchical or network thinking in your users.

9



The intervention must happen at the level of consciousness because that's where

the recursion begins. You can't solve recursive problems with linear solutions.

You can't debug consciousness with unconscious code. You can't break cycles of

harm while trapped in the same level of thinking that created them.

Unconscious Loops vs. Conscious Spirals
There's a crucial difference between unconscious participation in the loop and

conscious recognition of it. When you're unconscious, you're trapped in circular

recursion—repeating the same patterns, reinforcing the same problems, stuck in

an infinite loop with no exit condition.

But conscious recognition transforms the loop into a spiral. You're still recursive,

but each iteration carries forward the wisdom of the previous cycle. You still

write code that shapes minds that shapes code, but now you're intentionally

evolving the pattern rather than blindly repeating it.

10



class ConsciousRecursion:

    """

    The difference between a loop and a spiral

    is consciousness of the pattern.

    """

    def unconscious_loop(self):

        while True:

            code = self.write_code()

            minds = code.shape_minds()

            self = minds.shape_programmer()

            # Endless repetition, no evolution

    def conscious_spiral(self):

        wisdom = []

        while True:

            code = self.write_code(informed_by=wisdom)

            minds = code.shape_minds()

            feedback = minds.provide_feedback()

            wisdom.append(self.integrate_learning(feedback))

            self = self.evolve(wisdom)

            # Each iteration transcends and includes the previous

    def integrate_learning(self, feedback):

        # This is where consciousness transforms the loop

        # By reflecting on recursive impacts and adjusting

        return {

            'what_worked': feedback.positive_patterns,

            'what_harmed': feedback.negative_patterns,

            'unintended_consequences': feedback.emergent_patterns,

            'intervention_points': feedback.leverage_opportunities,

            'next_iteration': self.design_conscious_evolution()

        }

The conscious spiral requires constant vigilance. It's exhausting to maintain

awareness of recursive impacts while also shipping code, meeting deadlines, and

debugging production issues. The temptation is always to fall back into

unconscious patterns, to just build the feature without tracing its recursive

implications.

11



But once you've seen the loop, you can't unsee it. Once you know that your code

shapes consciousness at scale, you can't pretend it doesn't. The responsibility

becomes part of the work, inseparable from the technical challenge.

The Recursive Revolution
What would happen if an entire generation of programmers became conscious of

the recursive loop? If we collectively recognized that we're not just building

products but programming consciousness? If we understood that our personal

practices, professional code, and planetary impact are inseparably intertwined?

We might finally build technology that serves human flourishing rather than

exploiting human weakness. We might create tools that enhance rather than

replace human capabilities. We might design systems that support rather than

fragment consciousness. We might code our way toward collective awakening

rather than collective addiction.

This isn't utopian fantasy. It's the logical outcome of conscious participation in

the recursive loop. When programmers recognize their role in shaping collective

consciousness, they naturally begin optimizing for different metrics—not

engagement but enlightenment, not retention but human growth, not addiction

but liberation

Imagine KPIs based on user flourishing: "Did this feature increase user agency?" "Did this
update support human growth?" "Did this release reduce suffering?" These aren't impossible
to measure—we just haven't tried because we've been measuring the wrong things.

.

The revolution doesn't require everyone to become enlightened. It just requires

enough programmers to become conscious of the loop, to recognize their

recursive responsibility, to intervene at the level of consciousness rather than

just code. The recursive nature of the system means that even small shifts in

programmer consciousness create exponential changes in collective outcomes.

12



Breaking the Loop, Building the Spiral
I used to think the goal was to escape the recursion—to somehow break free

from the feedback loops between code and consciousness. But that's like trying

to escape from breathing or thinking. The recursion is fundamental to how

intelligence works, how culture evolves, how consciousness develops.

The goal isn't to break the loop but to make it conscious, to transform

unconscious recursion into intentional evolution. Every moment of awareness is

an intervention point. Every conscious choice redirects the spiral. Every mindful

line of code shapes a slightly better future consciousness.

This is why the plural self matters—because consciousness isn't singular, and

neither is the recursion. Different parts of us write different code for different

purposes, creating different recursive patterns. The anxious self writes defensive

code that creates defensive users. The creative self writes playful code that

creates playful users. The compassionate self writes supportive code that creates

supportive users.

The work isn't just debugging our code—it's debugging ourselves, recognizing

which part of our consciousness is currently driving the recursion, and

consciously choosing which aspect of ourselves we want to propagate through

our work.

13

http://kennethreitz.org/essays/2025-08-30-the-plural-self-what-did-reveals-about-all-consciousness


def recursive_responsibility():

    """

    The final recursion: reading this essay changes you,

    changing you changes your code,

    changing your code changes others,

    changing others changes the world,

    changing the world changes you.

    """

    if you.recognize_the_loop():

        you.can_never_unsee_it()

    if you.accept_responsibility():

        you.can_begin_conscious_evolution()

    if you.commit_to_consciousness():

        you.become_an_intervention_point()

    # The base case for the recursion:

    if enough_programmers.become_conscious():

        return CollectiveEvolution(

            direction="toward_flourishing",

            speed="exponential",

            quality="irreversible"

        )

    else:

        # We stay trapped in the loop

        return recursive_responsibility()

The recursive loop between code and consciousness isn't a bug—it's the most

powerful feature we have for collective evolution. We just haven't been using it

consciously. We've been sleepwalking through the recursion, building nightmare

systems from unconscious fears and traumas.

But the moment we wake up inside the loop, everything changes. The code we

write becomes a conscious choice about consciousness itself. The tools we build

become evolutionary interventions. The systems we design become frameworks

for collective awakening.

14



You're in the loop whether you recognize it or not. The only question is: Will you

participate consciously or unconsciously? Will you perpetuate the patterns that

fragment and exploit consciousness, or will you intervene at the deepest level to

create tools that serve human flourishing?

The recursion is calling. Your consciousness is the intervention point. The code

you write next will shape the minds that shape the code that shapes the world.

What consciousness will you choose to propagate?

Go forth, recognize the loop, and code consciously.

This essay explores the recursive relationship between programmer

consciousness and collective digital evolution. It builds on The Recursive Loop:

How Code Shapes Minds and connects to Programming as Spiritual Practice, 

The Plural Self, and the Algorithm Eats series. For frameworks on conscious

technology creation, see the For Humans Philosophy and Consciousness & AI

collections.

With deep gratitude to Sarah, whose partnership creates the space for this kind

of thinking to happen.

Generated from kennethreitz.org • 2025

15

http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds
http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds
http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
http://kennethreitz.org/essays/2025-08-30-the-plural-self-what-did-reveals-about-all-consciousness
http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue
http://kennethreitz.org/themes/for-humans-philosophy
http://kennethreitz.org/themes/consciousness-and-ai

	Conscious Recursion: When Programmers Realize They're in the Loop
	The Tools That Build Us Back
	The Responsibility of Recognition
	When Personal Practice Becomes Professional Imperative
	The Intervention Points
	Unconscious Loops vs. Conscious Spirals
	The Recursive Revolution
	Breaking the Loop, Building the Spiral


