Building for Contemplation:
When Spiritual Practice
Becomes Code

NOVEMBER 2025

10 min read ¢ 2,313 words

Themes: Consciousness Technology Programming Recursive Spiritual

Contemplative

"Study to shew thyself approved unto God, a workman that needeth not to be
ashamed, rightly dividing the word of truth." — 2 Timothy 2:15 (KJV)

I've been building Bible study tools not because I'm particularly devout, but
because I needed them. My spiritual practice—irregular, questioning, deeply
personal—required tools that didn't exist. So I built kjvstudy.org, and in doing so,
discovered something profound about the recursive loop between personal
values and professional work.

Most Bible apps optimize for engagement. Daily streaks, social features,
gamification mechanics—the same dark patterns that consume virtue across the
internet. They treat Scripture like content to be consumed rather than wisdom to
be contemplated. The algorithmic approach to spirituality feels like serving two
masters, and we know how that story ends

"No man can serve two masters: for either he will hate the one, and love the other; or else he
will hold to the one, and despise the other." — Matthew 6:24 (KJV). The tension between
engagement metrics and spiritual contemplation is irreconcilable.

https://kjvstudy.org/book/2%20Timothy/chapter/2#verse-15
https://kjvstudy.org
http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue
http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue

What I needed was different: a quiet digital space for deep reading. No
notifications. No social features. No gamification. Just the text, the scholarship,
and the space to think. Building this revealed how profoundly our tools shape not
just what we think about, but how we're capable of thinking at all.

The Personal Need That Became Code

My relationship with Scripture is complicated. Raised Christian, became
agnostic, then found myself returning to biblical texts not for doctrine but for the
recursive patterns—the same wisdom appearing in different forms, pointing
toward something fundamental about consciousness and human experience.

The existing tools frustrated me. Commercial Bible apps interrupted reading
with ads and push notifications. Academic resources hid behind paywalls and
institutional barriers. Popular study sites optimized for quick answers rather
than deep understanding. Everything treated Scripture as either product to
monetize or content to consume.

I wanted what programmers call a "pure function"—input text, output
understanding, no side effects:

def contemplate scripture(passage, context=None):
A pure function for spiritual practice.
No tracking, no metrics, no manipulation.
Just text and consciousness meeting.
if context:
passage = enrich with scholarship(passage, context)

No engagement tracking
No notification scheduling

No addiction mechanics

return passage.presented for contemplation()

This wasn't about rejecting technology in spiritual practice. It was about building
technology that serves contemplation rather than consuming attention. The
difference matters more than most realize.

Values Manifesting as Architecture

Every technical decision in kjvstudy.org embodies a value about how technology
should serve human consciousness. These aren't arbitrary implementation
details—they're philosophical commitments expressed through code.

Choosing Depth Over Engagement

The platform provides seminary-level theological content—extensive Greek and
Hebrew word studies, detailed historical context, comprehensive cross-
references. Each of the nine Fruits of the Spirit has 4-5 paragraph expositions
with etymological analysis. The seven theological study guides contain over 50
detailed sections total.

This depth serves a purpose: real understanding requires time and attention. You
can't contemplating the nature of agape love in a TikTok-length snippet. Complex
ideas need space to breathe

Edward Tufte's design principles shaped the interface—generous whitespace, readable
typography, sidenotes for context. The design itself becomes contemplative practice,
creating cognitive space for deeper thinking.

class TheologicalContent:

"""Not snippets but scholarship."""

def init (self, topic):
self.greek etymology = deep linguistic analysis(topic)
self.hebrew roots = trace to source(topic)
self.historical context = situate in time(topic)
self.cross references = find recursive patterns(topic)
self.practical application = bridge to present(topic)

Not sound bites but substance
self.minimum depth = "seminary level"
self.reading time = "as long as needed"

Genealogy as Pattern Recognition

One of the platform's most contemplative features is the biblical family tree—a
searchable genealogy from Adam through the entire biblical narrative. This
wasn't just a data visualization exercise. It became a meditation on recursive
patterns across generations.

Following the lineage from Adam to Noah to Abraham to David to Solomon to
Jesus reveals something profound: the same patterns repeat. Faithfulness and
doubt. Obedience and rebellion. Divine promise and human failure. The
genealogies aren't just historical records—they're consciousness patterns
persisting across time.

Building the search functionality meant encoding these relationships in data
structures. But the process revealed theological insights:

https://kjvstudy.org/family-tree
https://kjvstudy.org/family-tree/person/i1
https://kjvstudy.org/family-tree/person/i1
https://kjvstudy.org/family-tree/person/i71
https://kjvstudy.org/family-tree/person/i60
https://kjvstudy.org/family-tree/person/i47
https://kjvstudy.org/family-tree/person/i490
https://kjvstudy.org/family-tree/person/i6

class BiblicallLineage:
"""Tracing consciousness patterns through generations."""
def init (self, person):
self.name = person
self.parents = find parents(person)
self.children = find children(person)
self.notable for = extract significance(person)

def trace to adam(self):
"""Every lineage traces back to origin.
Recursive search through ancestors
Like consciousness tracing back to source
self
[]

current
lineage

while current.parents:
lineage.append(current)
current = current.parents[0] # Simplified

return lineage # The pattern of inheritance

def find pattern echoes(self):
"""Same struggles, different generations."""
Abraham's faith crisis echoes in his descendants
David's complexity repeats in Solomon
Wisdom and folly in the same person
The recursion isn't just genealogical
It's theological, psychological, spiritual
pass

The genealogy tool enables a kind of contemplation impossible without
computational support—seeing patterns across hundreds of people and
thousands of years. Searching for any biblical figure reveals not just their
immediate family but their place in the larger recursive pattern of redemption
and failure that Scripture documents.

https://kjvstudy.org/family-tree

This connects to why I'm drawn to biblical texts: they're honest about the
recursion. The same problems repeat. The same grace returns. The same human
consciousness struggles with the same fundamental questions across millennia.
The family tree makes this visible in a way that reading linearly never could

The begats that most readers skip—"And Abraham begat Isaac, and Isaac begat Jacob"—
become profound when you can visualize the entire tree and trace how characteristics,
choices, and consequences echo through generations. Pattern recognition as spiritual
practice.

Server-Side Simplicity as Spiritual Discipline

The entire platform runs on FastAPI with server-side rendering. No JavaScript
frameworks. No client-side complexity. This isn't technical regression—it's
conscious restraint. The simplicity serves multiple purposes:

1. Accessibility: Works on any device, any connection speed, any browser
2. Performance: Pages load instantly, even on slow connections
3. Focus: No JavaScript means no temptation to add engagement tricks

4. Maintenance: Simple systems stay maintainable, sustainable,
repairable

The path of technical simplicity
@app.get("/bible/{book}/{chapter}")
def render chapter(book: str, chapter: int):
Simple request, simple response.
No state management complexity.
No client-side routing maze.
No build pipeline prayers.
text = bible.get chapter(book, chapter)
return templates.render("chapter.html",
content=text,
sidenotes=generate context(text))

This mirrors the spiritual principle of simplicity—removing unnecessary
complexity to focus on what matters. Every layer of abstraction we don't add is
cognitive load we don't impose on users or maintainers.

Open Source as Gift Economy

The entire codebase is open source under the ISC license. Not open core with
premium features. Not source-available with restrictions. Genuinely open—take
it, fork it, improve it, deploy your own.

This reflects a deeper principle about spiritual tools: they should amplify
capability without creating dependency. The gift economy of open source mirrors
the gift economy of grace—freely received, freely given

"Freely ye have received, freely give." — Matthew 10:8 (K]JV). The economics of grace don't
follow market logic. Neither should tools for spiritual practice.

The Recursive Loop in Action

Building kjvstudy.org exemplifies the recursive loop between personal practice
and collective impact:

Personal spiritual practice — I need better tools for contemplative reading
Professional expression — I build those tools with my programming skills
Collective resource — Others can now use these tools for their practice
Recursive influence — Their deepened practice influences their work Systemic
change — More tools built for contemplation over consumption

This is how programmer consciousness shapes collective consciousness. Not
through grand gestures but through embedding values in the tools people use
daily.

Programming as Theological Practice

There's something profound about implementing theological concepts in code. It
forces precision where doctrine often remains vague. Consider implementing the
concept of grace:

http://kennethreitz.org/essays/2025-09-05-the_recursive_loop_how_code_shapes_minds

class Grace:

Implementing unmerited favor in code
reveals the paradox at its heart.

def init (self):
self.earned = False # By definition
self.deserved = False # That's the point
self.conditional = False # Despite our instincts

def receive(self, person):
No validation of worthiness
No checking of prerequisites
No measurement of merit
return self.transform(person)

def transform(self, person):
Grace doesn't check your history
TODO: How do you implement unconditional love?
FIXME: Human logic breaks here
pass

The code can't fully capture grace—that's the point. But trying to implement it
reveals its structure, its paradoxes, its resistance to systematic logic.
Programming becomes a form of theological meditation, using logic to explore
what transcends logic.

When Tools Shape Consciousness

The most profound impact of kjvstudy.org isn't the features but what their
absence enables. No notifications means uninterrupted contemplation. No social
features means genuine solitude with the text. No gamification means intrinsic
rather than extrinsic motivation for study.

Users report reading for hours without realizing time has passed—the opposite
of the fragmented attention most apps create. They describe finding connections
they'd never noticed, sitting with difficult passages instead of immediately
googling interpretations, actually memorizing verses because they want to carry
the words with them.

This is technology serving human consciousness rather than exploiting it. The
platform creates conditions for the kind of deep, sustained attention that modern
life systematically destroys.

The Responsibility of Building
Contemplative Tools

When you build tools for spiritual practice, you're handling something sacred—
not the code itself, but the human consciousness it shapes. Every design decision
influences how people encounter the transcendent. This creates unique
responsibilities:

Respect the Mystery: Not everything needs to be optimized, analyzed, or A/B
tested. Some experiences should remain unmeasured, untracked, privately held
between the person and the divine.

Refuse Dark Patterns: The temptation to add "just one" engagement feature is
constant. Daily verses could have streak counters. Reading progress could have
social sharing. The slippery slope toward attention exploitation is always there.

Serve All Seekers: Seminary-level scholarship without seminary-level
gatekeeping. Complex ideas presented accessibly. No paywalls on wisdom. This
democratization of theological resources serves consciousness at scale.

Maintain Simplicity: Every feature added is complexity imposed. The discipline
isn't in what you build but what you choose not to build. Contemplation needs
space, not features.

The Tufte Principles Applied to Sacred
Texts

Edward Tufte's design principles—clarity, precision, efficiency—aren't just
aesthetic choices. They're ethical commitments about how information should
serve human understanding. Applied to Scripture, they become almost liturgical:

/* Typography as spiritual practice */
.scripture {
font-family: "Ideal serif for sustained reading";
line-height: 1.6; /* Space to breathe */
max-width: 65ch; /* Optimal reading measure */
margin: rhythm * 2; /* Visual rhythm as contemplative pace */

}

.sidenote {
/* Context without interruption */
float: right;
clear: right;
margin-right: -60%;
width: 50%;
/* Scholarship alongside scripture */
/* Questions beside assertions */
/* Wonder parallel to wisdom */

}

The design becomes part of the spiritual practice—creating visual and cognitive
space for contemplation.

Building the opposite of "Algorithm Eats"

Everything I've written about how algorithms consume human virtue finds its
inverse in kjvstudy.org. Where algorithms optimize for engagement, this
optimizes for contemplation. Where they fragment attention, this sustains it.
Where they create anxiety, this offers peace.

10

http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue

This isn't coincidence. Understanding how technology exploits consciousness
reveals how to build technology that serves it. The same recursive loop that
creates problems can create solutions—if we embed different values.

class ContemplativeTechnology:
"""The opposite of engagement optimization."""

def init (self):
self.metrics tracked = [] # Nothing
self.notifications sent = 0 # Never
self.addictive mechanics = None # Refused

def interact with user(self, user):
No hooks, just help
provide requested resource(user)
respect natural conclusion(user)
Let them leave when ready
Trust they'll return if valuable

The Gift That Keeps Recursing

Open-sourcing kjvstudy.org creates recursive possibilities. Someone might fork it
for the Quran or the Bhagavad Gita. The patterns for contemplative reading
apply across traditions. The code becomes a gift that keeps giving—not my gift,
but the collective gift of everyone who uses and improves it.

This is the best aspect of programming as spiritual practice. Your personal
practice becomes code, which becomes a tool, which serves others' practice,
which influences their work, which shapes collective consciousness. The loop
recurses indefinitely.

I built kjvstudy.org because I needed it. But needs are never purely individual. If
I needed contemplative tools without manipulation, others did too. If I was
frustrated by gatekept scholarship, others were too. If I wanted to read Scripture
without algorithmic interference, others did too.

11

http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice

Personal practice inevitably becomes collective resource when you build rather
than just consume. The values you embed in your tools propagate through
everyone who uses them. The consciousness you cultivate through building
shapes the consciousness of those who engage with what you've built.

The Workman That Needeth Not to Be
Ashamed

"Rightly dividing the word of truth" turns out to apply equally to Scripture and
code. Both require careful interpretation, contextual understanding, and respect
for complexity. Both serve human consciousness. Both can illuminate or mislead
depending on how they're handled.

Building kjvstudy.org taught me that technical craftsmanship and spiritual
practice aren't separate endeavors. The same attention, intention, and care
apply to both. The same values that guide contemplative reading should guide

contemplative programming.

The platform isn't perfect. No tool is. But it demonstrates something important:
we can build technology that serves rather than exploits consciousness. We can
create digital spaces for genuine contemplation. We can use our technical skills
to amplify rather than fragment human attention.

The recursive loop continues. Someone reading Scripture on kjvstudy.org might
be inspired to build their own contemplative tools. Those tools might help others
slow down, think deeper, resist the algorithmic consumption of their attention.
Gradually, we build alternatives to the engagement economy—not through
revolution but through quietly creating what we need.

This is the path forward: recognizing that code shapes consciousness, accepting
the responsibility that creates, and building accordingly. Every function we
write, every interface we design, every system we architect becomes part of the
collective cognitive environment. We can choose whether that environment
serves or exploits human consciousness.

The choice happens one line of code at a time. One conscious decision at a time.
One contemplative tool at a time.

12

Go forth, and build, contemplatively

With gratitude to Sarah for endless patience with late-night theological coding sessions, and
to the open source community that makes projects like this possible. Sometimes the best
spiritual practice is building tools that help others practice.

Generated from kennethreitz.org ¢ 2025

13

	Building for Contemplation: When Spiritual Practice Becomes Code
	The Personal Need That Became Code
	Values Manifesting as Architecture
	Choosing Depth Over Engagement
	Genealogy as Pattern Recognition
	Server-Side Simplicity as Spiritual Discipline
	Open Source as Gift Economy

	The Recursive Loop in Action
	Programming as Theological Practice
	When Tools Shape Consciousness
	The Responsibility of Building Contemplative Tools
	The Tufte Principles Applied to Sacred Texts
	Building the opposite of "Algorithm Eats"
	The Gift That Keeps Recursing
	The Workman That Needeth Not to Be Ashamed

