\ g
L g

The Becoming: Building a
Poetry Publishing Pipeline
with Claude Code

2026
7 min read ¢ 1,586 words

Themes: Consciousness Technology Programming Recursive Spiritual

My wife Sarah wrote a book of poetry. It's called The Becoming, and it's available
now on Amazon in both paperback and Kindle editions. Every poem in it was
written entirely by her—raw, honest, and unflinching. The Al part of this story
isn't about the writing. It's about everything else.

The entire collection is also available for free at poemsbysarah.com. We believe
poetry should be accessible. If you want to hold it in your hands, buy the book. If
you just want to read it, the website is there for you.

But this essay isn't really about the poetry itself—Sarah's words speak for
themselves. This is about how Claude Code and I built an entire publishing
pipeline from scratch: extracting poems from raw manuscript files, curating a
collection from over 120 poems, generating print-ready PDFs, building a static
website, running sentiment analysis, and producing a book ready for print-on-
demand—all through conversational programming with an Al

https://amzn.to/4qPQIH3
https://poemsbysarah.com

The Raw Material

Sarah writes poetry the way most people journal. She doesn't organize it into
files or folders. She writes in bursts, sometimes a dozen poems in a night, into
whatever text file happens to be open. What I started with was two manuscript
files— manuscript.txt at 125KB and manuscript2.txt at 61KB—containing
around 120 poems with no consistent formatting, no metadata, and no
separation beyond occasional lines of underscores.

The first task was extraction. Claude Code wrote a parser that detects two
different manuscript formats—one separated by underscore lines, the other by
blank-line patterns—and splits them into individual markdown files with clean
titles:

MANUSCRIPT1 DIR = Path("poems/manuscriptl") # 64 poems
MANUSCRIPT2 DIR = Path("poems/manuscript2") # 30 poems
EDITED DIR = Path("poems/edited") # 26 curated poems

Each poem becomes a simple markdown file. 01-bathtub-blues.md starts with an
H1 header and contains the poem body with line breaks preserved. Nothing
fancy. The structure is the simplicity.

Curation with Claude

One hundred and twenty poems is too many for a collection. The question wasn't
which poems were good—most of them were—but which ones belonged together,
telling a single coherent story of transformation.

Claude helped us read through every poem and identify a narrative arc. We
landed on four acts:

1. The Hollow — Despair and emptiness. The poems that live at rock
bottom.

2. The Reckoning — Self-awareness beginning to emerge. Looking at the
damage honestly.

3. The Awakening — Transformation in progress. The first signs that
change is real.

4. The Bloom — Love and wholeness. Not perfection, but arrival.

Twenty-six poems made the cut.

This is the editor's true work—signal extraction from noise. The 94 poems that didn't make it
weren't bad; they were necessary context, like kernels that had to be removed to reveal the
fruit. Al can analyze but humans must decide what serves the story.

Claude also helped identify where long poems needed to breathe—splitting
"Grappling with Reality" into separate pieces, breaking "Self Reflections" so that
"Patience" could stand on its own. Not rewriting. Just finding the natural seams
Sarah had already laid down.

The Document Pipeline

This is where it gets interesting from a technical perspective. The entire
publishing pipeline is thirteen Python scripts, roughly 6,000 lines of code, almost
all of it written through conversation with Claude Code. I'd describe what I
wanted, Claude would write the code, I'd run it, we'd iterate.

PDF Generation with WeasyPrint

The core of the print pipeline is WeasyPrint—a Python library that converts
HTML and CSS into PDF.

HTML and CSS as a typesetting language feels counterintuitive until you realize it solves the
problem of preserving semantic structure while specifying layout—you're describing what
things are, not just how they look.

This turns out to be a remarkably good approach to book typesetting. You write
your layout in CSS, your content in HTML, and WeasyPrint handles pagination,
margins, and page breaks.

The print-ready interior targets a 5.5" x 8.5" US Trade paperback format:

TRIM WIDTH = "5.5in"

TRIM HEIGHT = "8.5in"

MARGIN OUTSIDE = "0.75in"

MARGIN GUTTER = "0.875in" # inside margin, wider for binding

https://weasyprint.org/

Each poem gets a dedicated page. Act titles get their own spreads with
epigraphs. The front matter includes a title page, dedication ("For those still
becoming."), and an introduction. CSS handles the typography—serif fonts,
generous line-height, ornamental section breaks using unicode characters like ¢
and <.

The pipeline also generates a cover, a full jacket spread with spine, and an EPUB
—all from the same markdown source files.

The WeasyPrint Dance on macOS

One thing Claude helped solve that would have taken me hours: WeasyPrint on
macOS requires Pango, Cairo, and GLib from Homebrew, but Python can't find
them without the right DYLD LIBRARY PATH . Claude wrote a setup module that
auto-detects Apple Silicon vs. Intel paths and configures the environment before
WeasyPrint imports:

def setup weasyprint():

"""Configure mac0S library paths for WeasyPrint."""
lib dir = Path("/opt/homebrew/1ib") # Apple Silicon
if not lib dir.exists():

lib dir = Path("/usr/local/lib") # Intel
os.environ["DYLD LIBRARY PATH"] = str(lib dir)
from weasyprint import HTML, CSS
return HTML, CSS

Small thing, but it's the kind of yak-shaving that kills momentum. Claude just
handled it.

Sentiment Analysis and the Healing Arc

This is the part that surprised me. Claude built an analysis suite using TextBlob
and NLTK that does more than basic sentiment scoring—it tracks the emotional
trajectory of the entire collection.

The tool detects six distinct narrative voices across Sarah's poetry:

This mirrors what I've found true in my own writing on consciousness—we're never singular.
We contain multitudes. The mythology of the unified self is comforting but false; we're
orchestras playing the same body. Poetry knows this. Sentiment analysis learning to detect it
feels like technology finally catching up to what humans have always known.

a child voice (words like scared, little, alone), a protector (strong, safe, fight), an
angry voice, a sensual voice, a spiritual voice, and an analytical voice. Many
poems contain three or more of these voices simultaneously.

But the most striking finding was the healing trajectory. The analysis compares
trauma-associated language (pain, wound, broken, fear, shame) against healing
language (bloom, rise, forgive, grace) across the collection:

First half: 51% healing language
Second half: 70% healing language
Shift: +19%

The numbers confirmed what we felt reading the poems in sequence—there's a
real, measurable arc from darkness to light. The darkest moment is "Lost in
Thought" at -0.31 sentiment. The brightest is "The Light of Morning" at +0.42.
That's a 0.73 emotional range across 26 poems and 3,206 words.

We turned all of this into an interactive appendix at poemsbysarah.com/
appendix.html, with Plotly charts showing the emotional arc, healing trajectory,
and trauma-to-healing ratios by act. Data visualization applied to the interior
landscape of a human being.

The Static Website

The website is generated by another script—889 lines that produce a complete
static site with Tufte CSS styling.

Edward Tufte's sidenote system, adapted for web, works because it mirrors how humans
actually read and think—the main narrative flows, but peripheral insights live in the
margins, waiting to be discovered. It's a humane design approach that respects different
kinds of attention.

Each poem gets its own page with keyboard navigation (arrow keys to move
between poems), metadata, and editorial sidenotes where poems were split or
renamed from the original manuscripts.

https://poemsbysarah.com/appendix.html
https://poemsbysarah.com/appendix.html

The index organizes everything by act, with thematic epigraphs. There's no
JavaScript framework, no build system, no dependencies at runtime. Just HTML,
CSS, and an SVG flourish. It loads instantly and will work forever.

What Claude Code Actually Did

I want to be specific about the division of labor, because I think it matters.

Sarah wrote every poem. The words, the images, the emotional truth—that's
entirely hers. Claude never touched the poetry itself.

We made every creative and editorial decision. Which poems to include, how
to order them, where to split long pieces, what the acts should be called, what
the book should look like. Claude offered suggestions and analysis, but the
curation was a human process.

Claude Code wrote the infrastructure. The extraction scripts, the PDF
generation pipeline, the website generator, the sentiment analysis tools, the
cover design, the EPUB builder.

This is the conversational programming model I've been writing about—where you think out
loud and Al implements your thinking in real time. The friction between human intention and
code execution collapses. You can iterate on metaphorical descriptions and watch them
become concrete systems.

I described what I wanted in conversation, Claude wrote the code, I ran it and
we iterated. Thirteen scripts, 6,000 lines of Python, built over the course of a few
sessions.

This is the model of human-Al collaboration I keep coming back to. The human
provides the what and the why. The Al provides the how. Neither could have
done this alone—I don't have the patience to hand-code 983 lines of print-ready
PDF generation CSS, and Claude doesn't have the lived experience to know
which poems belong together.

The Recursive Thing

There's something fitting about using Al to build the infrastructure that
publishes deeply human poetry.

The recursive pattern shows itself everywhere: Sarah becomes through writing. We become
through publishing. Technology becomes more human by serving human becoming. Each
layer transforms itself in service of the next.

Sarah's poems are about becoming—the painful, nonlinear process of turning
into who you actually are. The technical pipeline is its own kind of becoming:
raw text files transforming into a bound book through a series of conversions,
each one preserving the essence while changing the form.

Markdown to HTML. HTML to PDF. PDF to printed page. Printed page to
someone's hands. Words to feeling.

The technology disappears. What remains is the poetry.

The Becoming is available now on Amazon. The full collection is free to read at

poemsbysarah.com.

Generated from kennethreitz.org * 2026

https://amzn.to/4qPQIH3
https://poemsbysarah.com

	The Becoming: Building a Poetry Publishing Pipeline with Claude Code
	The Raw Material
	Curation with Claude
	The Document Pipeline
	PDF Generation with WeasyPrint
	The WeasyPrint Dance on macOS

	Sentiment Analysis and the Healing Arc
	The Static Website
	What Claude Code Actually Did
	The Recursive Thing

