
The 12 Factor App
2012 

4 min read • 815 words 

This talk recaps the 12 Factor App methodology, which is a set of best practices

for building scalable, maintainable, and portable web applications.

Introduction
The Twelve-Factor App methodology represents a comprehensive approach to

building software-as-a-service applications that prioritizes consistency,

scalability, and deployment flexibility across different environments. Born from

practical experience rather than academic theory, this methodology emerged

from real-world patterns observed in production systems. 

Kenneth's presentation of the 12-factor methodology at Heroku helped establish these
principles as industry standards. The methodology codified practices that Heroku discovered
through hosting thousands of applications, making implicit knowledge explicit.

I. Codebase
The first principle establishes a fundamental constraint: maintain a single

codebase tracked in version control but deployed across multiple environments.

This seemingly simple requirement creates clarity about application boundaries

—if multiple codebases exist, you're dealing with a distributed system rather

1



than a single application. The principle enforces architectural clarity while

enabling consistent deployment patterns across development, staging, and

production environments.

II. Dependencies
Dependency management must be explicit and isolated, eliminating reliance on

system-wide packages or tools that might vary between environments. This

principle ensures true portability by making all dependencies visible and

manageable through the application's dependency declaration. No more hoping

that the right version of a library happens to be installed system-wide—

everything the application needs should be explicitly stated and automatically

installable.

III. Config
Configuration data—database connections, service credentials, environment-

specific settings—must be stored in the environment rather than in code. This

externalization makes applications truly portable across different deployment

contexts without requiring code changes or rebuilds. 

The configuration principle fundamentally changed how developers think about application
deployment. By externalizing configuration, applications became truly portable across
environments, a concept that seems obvious now but was revolutionary when first
articulated.

This separation enables the same build to run in development, staging, and

production with only environmental differences, dramatically reducing

deployment complexity and configuration drift between environments.

IV. Backing Services
Backing services—databases, message queues, mail services, caching systems—

should be treated as attached resources, accessible via URLs or configuration

stored in the environment. The application should make no distinction between

2



local services (like a local PostgreSQL database) and third-party services (like

Amazon S3). This abstraction enables seamless service swapping and promotes

loose coupling between the application and its dependencies.

V. Build, Release, Run
The deployment pipeline must strictly separate three stages: build (transform

code into executable bundle), release (combine build with configuration), and

run (execute the application in the target environment). This separation enables

clean rollbacks, parallel development, and robust release management. Each

release becomes an immutable artifact that can be deployed consistently across

environments or rolled back when issues arise.

VI. Processes
Applications should execute as one or more stateless processes that share

nothing and persist data only to stateful backing services. Process isolation

enables horizontal scaling and fault tolerance—if a process crashes, it can be

restarted cleanly without affecting other processes or corrupting shared state.

This statelessness is fundamental to building applications that can scale

elastically with demand.

VII. Port Binding
Applications should be completely self-contained and expose services by binding

to ports rather than relying on external web servers for execution. This principle

makes applications portable across different runtime environments and enables

them to become backing services for other applications. The application

becomes its own web server, eliminating deployment dependencies on specific

server configurations.

VIII. Concurrency
Scale applications horizontally using the Unix process model, assigning different

workloads to different process types (web processes, worker processes, etc.).

Rather than threading within a single large process, applications should

3



embrace process-based concurrency managed by the operating system. This

approach enables fine-grained resource allocation and scaling strategies that

match workload characteristics.

IX. Disposability
Processes should be disposable, capable of starting or stopping on short notice

while maintaining system robustness. Fast startup times enable rapid scaling

and deployment, while graceful shutdown ensures that in-flight work completes

properly. This disposability is essential for fault tolerance, enabling systems to

recover quickly from hardware failures or deployment updates.

X. Dev/Prod Parity
Development, staging, and production environments should be kept as similar as

possible to minimize gaps in time, personnel, and tools. This parity reduces

deployment surprises and ensures that testing accurately reflects production

behavior. The closer these environments mirror each other, the more confident

teams can be in their deployments.

XI. Logs
Applications should treat logs as continuous event streams, writing to stdout

without concern for their routing or storage. This separation of concerns allows

the execution environment to handle log aggregation, routing, and analysis using

specialized tools. The application focuses on generating meaningful events while

the infrastructure handles log management.

XII. Admin Processes
Administrative and maintenance tasks should run as one-off processes in the

same environment as regular app processes, using identical code and

configuration. This ensures that admin tasks have access to the same resources

and behave consistently with the main application, preventing subtle bugs that

arise from environment differences.

4



For more details, visit 12factor.net.

Generated from kennethreitz.org • 2025

5

https://12factor.net

	The 12 Factor App
	Introduction
	I. Codebase
	II. Dependencies
	III. Config
	IV. Backing Services
	V. Build, Release, Run
	VI. Processes
	VII. Port Binding
	VIII. Concurrency
	IX. Disposability
	X. Dev/Prod Parity
	XI. Logs
	XII. Admin Processes


