
API Driven Development
2012 

3 min read • 675 words 

Introduction to API Driven Development
Presented by Kenneth Reitz, this talk explored the transformative potential of

API-driven development and how it fundamentally changes the way developers

approach building software systems. The presentation examined how this

methodology not only benefits individual developers but enhances overall team

productivity by creating cleaner separation of concerns and more maintainable

codebases.

The discussion began with an introduction to Heroku as a web platform that

abstracts server management complexities, making application deployment

dramatically simpler. 

Heroku pioneered the Platform-as-a-Service (PaaS) model, introducing concepts like git-
based deployments and buildpacks that became industry standards.

This platform exemplified the broader philosophy of the talk: complex

infrastructure should be abstracted away so developers can focus on solving

business problems rather than managing servers.

1



Open Source Contributions
The talk highlighted Kenneth's significant contributions to the open-source

ecosystem, particularly the Requests library for Python, which revolutionized

how developers interact with HTTP services by replacing complex, unintuitive

interfaces with elegant, human-friendly APIs. This library became a cornerstone

of Python web development, demonstrating the profound impact that well-

designed APIs can have on developer productivity.

Complementing Requests was HTTPBin, a web service specifically designed for

testing HTTP clients. This tool embodied the API-driven philosophy by providing

a reliable, feature-rich testing endpoint that developers could use to verify their

HTTP implementations without depending on external services that might

change or disappear.

Service-Oriented Architecture (SOA)
The presentation identified critical problems with traditional monolithic

development approaches, where tightly coupled components create cascading

dependencies that make iterative changes increasingly difficult and risky. As

applications grow in complexity, this tight coupling becomes a significant barrier

to agility and innovation.

Kenneth advocated for Service-Oriented Architecture as a fundamental solution

to these scaling problems. By decoupling different components into discrete

services, teams gain the ability to iterate independently, scale specific

functionality as needed, and maintain cleaner interfaces between system

components. This architectural approach enables organizations to move faster

while reducing the risk of changes breaking unrelated functionality.

Building for Developers
A central theme of the presentation was treating APIs as first-class citizens in

the development process, designed with developers as the primary users in

mind. This philosophy recognizes that developers are the actual customers of

APIs, and their experience using these interfaces directly impacts productivity

and adoption.

2



Kenneth advocated for Readme-Driven Development, a methodology that

begins with writing comprehensive README documentation before any

implementation begins. 

This development philosophy, popularized by Tom Preston-Werner at GitHub, forces
developers to think about user experience before implementation, often resulting in cleaner,
more intuitive APIs.

This approach forces developers to think from the user's perspective from the

very beginning, resulting in APIs that feel natural to use rather than exposing

internal implementation details.

Pragmatic Development
The talk emphasized problem-driven development—the principle that the best

solutions emerge when developers experience the problems they're trying to

solve firsthand. Kenneth illustrated this with examples like GitHub and

37signals, where breakthrough products emerged from founders solving their

own daily frustrations. 

37signals (now Basecamp) famously built their project management tool to solve their own
internal collaboration problems, embodying the "scratch your own itch" philosophy of
software development.

This "scratch your own itch" philosophy ensures that solutions address real

needs rather than imagined requirements. Equally important was Kenneth's

emphasis on simplicity over functionality—arguing that a simple, intuitive API

that solves common problems elegantly is far more valuable than one packed

with complex features that few developers will actually use.

Closing Thoughts
The presentation concluded with a strong emphasis on simplicity in API

design as the foundational principle that makes interfaces both accessible and

genuinely useful for developers. This simplicity isn't about limiting functionality,

but rather about presenting power through intuitive, discoverable interfaces that

align with developers' mental models.

3



Q&A Session
The discussion period explored practical challenges of implementing these

principles, particularly the complexities of transitioning existing monolithic

codebases to service-oriented architectures. Kenneth emphasized that while this

transition is challenging, teams should prioritize it early in their development

cycle if scalability is a long-term concern, as retrofitting SOA principles becomes

exponentially more difficult as systems grow in complexity and interdependence.

Generated from kennethreitz.org • 2025

4


	API Driven Development
	Introduction to API Driven Development
	Open Source Contributions
	Service-Oriented Architecture (SOA)
	Building for Developers
	Pragmatic Development
	Closing Thoughts
	Q&A Session


