
The Future of Python
Dependencies Management
2018

3 min read • 762 words

Introduction
This presentation introduced Pipenv as the next evolution in Python dependency

management, offering a fundamentally streamlined approach that addressed the

longstanding complexities and fragmentation of traditional methods like pip

and virtualenv . The timing proved prescient—this vision would soon become

Python's official recommendation.

This talk coincided with Pipenv's adoption as the officially recommended packaging tool by
Python.org, marking a significant shift in Python's packaging landscape and validating
Kenneth's vision for better dependency management.

History and Challenges of Python
Packaging
The presentation began by examining Python packaging's troubled history. In the

early days, PyPI (formerly "The Cheeseshop") served merely as an index rather

than a comprehensive package host. Packages were scattered across external

1

hosts, the entire system ran on a single server, and manual processes combined

with global installations created consistently poor user experiences that

frustrated newcomers and experts alike.

Gradual evolution brought some improvements: Pip eventually replaced the

problematic easy_install as the primary package manager, virtualenv became

the standard solution for creating isolated environments, and requirements.txt

files emerged as the conventional approach to tracking dependencies.

However, these tools introduced their own complications. Virtualenv presented a

steep learning curve that proved particularly difficult for newcomers to Python.

Requirements.txt files suffered from a fundamental impedance mismatch

between what was actually installed and what was conceptually needed, often

leading to non-deterministic builds that worked on one machine but failed on

another.

The Problem with Current Practices
The presentation detailed specific problems plaguing Python's dependency

ecosystem. Virtualenv, while solving environment isolation, remained a difficult

abstraction for beginners and felt manual and unnatural without additional tools

like virtualenv-wrapper . This complexity barrier prevented many developers

from adopting proper isolation practices.

Requirements.txt created its own set of complications by requiring two distinct

types of dependency files: one containing unpinned dependencies for general

requirements (like "Flask"), and another with pinned, all-inclusive dependencies

for reproducible builds. This dual-file system confused developers and made

dependency management unnecessarily complex.

Most critically, Python lacked a lockfile for deterministic dependency

management—a feature that other language communities like Node.js and PHP

had successfully implemented and relied upon.

The introduction of lockfiles to Python represented Kenneth's broader philosophy of learning
from other language ecosystems. Rather than accepting "that's just how Python works," he
imported proven concepts from JavaScript and Ruby communities.

2

This absence meant that Python developers couldn't guarantee that the same

dependency versions would be installed across different environments, leading

to the persistent "works on my machine" problem.

The Solution: Pipfile and Pipenv
The solution emerged in the form of Pipfile, a new standard designed to

completely replace requirements.txt with a more thoughtful approach. Pipfile

uses the TOML format, making it both human-readable and machine-parseable.

Its structure includes two logical sections: [packages] for production

dependencies and [dev-packages] for development-only dependencies,

eliminating the confusion of managing multiple requirements files.

Pipfile.lock complements this by providing a machine-readable JSON file

containing pinned dependencies and acceptable hashes for each release, finally

bringing deterministic builds to Python. This lockfile approach ensures that the

exact same dependency tree can be reproduced across different environments

and deployment targets.

However, the transition faced practical challenges. Pipfile wasn't yet integrated

into pip itself, and full ecosystem integration would require time and resources

that the Python packaging community needed to allocate carefully.

Pipenv: The Recommended Tool
Pipenv emerged as the comprehensive solution that unified these improvements

into a single, officially recommended tool by Python.org. Its key innovation was

automating virtualenv management while seamlessly integrating Pipfile and

Pipfile.lock for dependency management, creating a workflow that felt natural

rather than mechanical.

The tool ensures deterministic builds through hash check verification during

installation, finally solving Python's reproducibility problems. This

comprehensive approach garnered significant praise from the Python

community.

3

User testimonials validated the approach: Jannis Leidel, former pip

maintainer, praised Pipenv for eliminating the need for manual virtualenv and

pip calls. Justin Myles Holmes offered particularly insightful commentary,

commending Pipenv for being "an abstraction that engages the mind, not just the

filesystem"—recognizing that good tools should align with how developers think

about problems rather than forcing them to manage low-level implementation

details.

Conclusion
The presentation positioned Pipenv as a significant evolutionary leap in Python

dependency management, finally bringing the intuitive workflows and

deterministic builds that other language ecosystems had long enjoyed. By

abstracting away the mechanical complexities of virtualenv management while

introducing proper lockfile semantics, Pipenv represented not just a tool

improvement but a philosophical shift toward treating dependency management

as a solved problem rather than an ongoing source of friction.

This advancement promised to lower barriers for Python newcomers while

providing the reliability and predictability that production deployments

demanded.

Generated from kennethreitz.org • 2025

4

	The Future of Python Dependencies Management
	Introduction
	History and Challenges of Python Packaging
	The Problem with Current Practices
	The Solution: Pipfile and Pipenv
	Pipenv: The Recommended Tool
	Conclusion

