
Growing Open Source Seeds
2014 

3 min read • 666 words 

Themes: Programming Spiritual

Introduction
This talk explores the diverse approaches to open source projects, examining the

evolution and challenges within the community. It focuses particularly on the

philosophy and sustainability of open source contributions, offering insights

drawn from years of maintaining some of Python's most popular packages. 

These insights into open source sustainability predate many current discussions about
maintainer burnout and funding, offering practical wisdom from someone who lived these
challenges firsthand.

Public vs. Open Source
There's a crucial distinction between public source and truly open source

projects. Public source involves code released with an open source license, but

without active maintenance or development. These projects often become

abandoned due to lack of interest or maintainer burnout, littering GitHub with

good intentions that never found sustainable support.

The Gittip project exemplified an extreme approach to open source, embracing

shared ownership and radical transparency. Major decisions were made through

community involvement on platforms like GitHub, with every discussion and

1



debate happening in public view. This represented a "shared investment" model

where contributors actively participated in the project's development, creating

true collective ownership rather than mere collaboration.

Dictatorship Projects
The Requests library operates as what I call a "dictatorship project" - managed

by a Benevolent Dictator For Life (BDFL) who makes all key decisions. While

community feedback is encouraged and valued, there's no expectation that it will

necessarily influence decisions. This model offers benefits like quick iteration

and maintaining a strong, coherent vision, though it carries risks including low

bus-factor and high potential for maintainer burnout. 

This frank discussion of the BDFL model was controversial but honest. While community-
driven projects have clear benefits, sometimes a single vision is necessary to maintain
coherence and prevent feature creep.

Lessons in Open Source
For contributors, interactions with maintainers should always be respectful and

appreciative of their time and effort. Remember that most maintainers are

volunteers, often working on projects in their limited free time. Your feature

request or bug report is one of hundreds they might be dealing with.

Maintainers must be thankful to contributors, choose words carefully, and take

time to educate users, particularly those new to open source. Every interaction

shapes the community culture. A harsh response to a first-time contributor might

discourage not just that individual, but others watching the exchange.

Avoiding Burnout
Open source sustainability remains one of the greatest challenges in software

development. Projects become difficult to sustain due to time constraints and the

risk of maintainers becoming bottlenecks in their own projects. The key lies in

maintaining purpose, mastery, and autonomy - the three pillars of intrinsic

motivation.

2



Delegation becomes essential for long-term sustainability. By leveraging a team

to handle issues and pull requests, maintainers can focus on larger architectural

decisions and strategic direction, improving both the project's health and their

own well-being.

The Power of Saying No
Perhaps the most important lesson I've learned is the power of maintaining

simplicity by rejecting features or pull requests that add unnecessary complexity.

Simple code is easier to maintain, understand, and extend. Complex code leads

to technical debt and exponentially higher maintenance burdens. 

This philosophy helped Requests maintain its elegant simplicity despite thousands of feature
requests, proving that restraint can be more valuable than addition.

Every feature added is a feature that must be maintained forever. Every

configuration option doubles the testing surface. Every abstraction adds

cognitive overhead. Sometimes the kindest thing you can do for your users is to

say no to their requests, preserving the simplicity that drew them to your project

in the first place.

Conclusion
Open source should make the world a better place without adding unnecessary

complexity. Success comes from focusing on simplicity, sustainability, and

maintaining a clear vision. The goal isn't to accept every contribution or

implement every feature request - it's to create something valuable that can be

maintained and understood over time.

These principles of ethical open source development evolved into deeper

understanding of programming as spiritual practice, treating code creation as

conscious service to human flourishing rather than mere technical achievement.

Generated from kennethreitz.org • 2025

3

http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice

	Growing Open Source Seeds
	Introduction
	Public vs. Open Source
	Dictatorship Projects
	Lessons in Open Source
	Avoiding Burnout
	The Power of Saying No
	Conclusion


