
Python for Humans
2012 

6 min read • 1,303 words 

Themes: Consciousness Technology Programming Human Centered Spiritual

Contemplative

Introduction
Delivered by Kenneth Reitz, this presentation focused on the critical challenge of

simplifying Python for everyday developers. The motivation stemmed from a

growing frustration with unnecessarily complex tools that forced developers to

think like computers rather than enabling computers to serve human needs. 

This talk established Kenneth as a thought leader in Python developer experience. The "for
Humans" philosophy became a movement that influenced countless Python libraries and
frameworks, emphasizing that software should serve humans, not the other way around.

This presentation crystallized insights that began years earlier with observations

about what makes a good programming language and the power of clean APIs.

The philosophical foundation emerged from recognizing that software

development should prioritize human mental models over computer science

abstractions, eventually evolving into a comprehensive approach to human-

centered technology design.

1

http://kennethreitz.org/essays/2009-01-whats_in_a_language
http://kennethreitz.org/essays/2009-01-the_power_of_a_clean_api
http://kennethreitz.org/essays/2009-01-software_development_vs_computer_science
http://kennethreitz.org/essays/2009-01-software_development_vs_computer_science
http://kennethreitz.org/themes/for-humans-philosophy
http://kennethreitz.org/themes/for-humans-philosophy


Key Projects
The talk showcased several projects that embodied the "for Humans" philosophy,

most notably Requests, which transformed HTTP interactions in Python by

replacing the notoriously complex urllib2 with an elegant, intuitive interface.

Supporting this ecosystem was Httpbin.org, an HTTP request and response

service that made testing and development significantly easier.

The broader "for Humans" suite demonstrated the philosophy's versatility across

different domains: Legit brought sanity to Git workflows, Envoy made

subprocess management comprehensible, Tablib handled tabular data with

grace, Clint provided clean CLI application building blocks, and Autoenv

created magical shell environments that just worked. Each project shared a

commitment to reducing cognitive overhead and making powerful tools

accessible to working developers.

Philosophy
The "for Humans" approach drew deeply from the Python Zen, particularly its

emphasis on simplicity and clarity over clever complexity. Three core tenets

guided the design philosophy: Beautiful is better than ugly—interfaces should

feel natural and pleasing to use. Simple is better than complex—every layer of

unnecessary abstraction creates friction for developers. And crucially, there

should be one obvious way to accomplish common tasks, reducing decision

paralysis and cognitive load.

The Problem with Existing Tools
Traditional Python libraries like urllib2 exemplified everything wrong with overly

complex API design. These tools forced developers to wade through layers of

abstraction, configuration objects, and edge-case handling just to accomplish

simple tasks. The resulting APIs not only deterred newcomers but actively

frustrated experienced developers who knew there had to be a better way. 

The urllib2 criticism became legendary in the Python community. Kenneth's articulation of
its flaws helped developers understand that complexity isn't a necessary evil—it's a design
choice that can be avoided with careful API planning.

2



This accessibility crisis created barriers that prevented Python from reaching its

full potential as a language for human expression. When simple tasks require

complex implementations, the tool begins serving itself rather than the human

using it.

The Solution: Requests
Requests emerged as the archetypal example of human-centered API design. Its

principles were deceptively simple: create a consistent, intuitive interface where

HTTP methods like GET, POST, PUT, and DELETE behave exactly as developers

expect them to, with parameters that map naturally to human mental models of

web requests.

The library's widespread adoption validated the core thesis—when tools align

with human thinking patterns rather than forcing humans to adapt to machine

logic, they succeed dramatically. Requests became ubiquitous not through

marketing or corporate backing, but because it solved real problems elegantly.

The Importance of API Design
Effective API design requires a fundamental shift in perspective—from

showcasing technical capability to serving actual human needs. The 90% use

case principle suggests that libraries should optimize ruthlessly for common

scenarios, making them trivially easy while providing escape hatches for edge

cases. This approach respects developers' mental bandwidth by not forcing them

to learn complex interfaces for simple tasks. 

The "90% use case" principle revolutionized how Python developers think about API design.
Rather than trying to handle every edge case in the primary interface, successful libraries
focus on making common tasks trivial while providing escape hatches for complex scenarios.

Equally crucial is documentation that meets humans where they are. A well-

written README serves as the first impression and often determines whether a

library gets adopted or abandoned. As libraries evolve and gain features,

maintaining API simplicity becomes increasingly challenging but remains

essential—complexity is easy to add but nearly impossible to remove.

3



Barriers to Python Adoption
Despite Python's reputation for simplicity, numerous barriers prevented

widespread adoption. Installation confusion plagued newcomers faced with

multiple Python versions, competing installation methods, and platform-specific

complications. The standard library itself contributed to the problem, offering

complex modules like urllib2 that required extensive study to accomplish basic

tasks.

Perhaps most frustratingly, dependency management and packaging created

friction that discouraged experimentation and sharing. When installing a simple

library becomes a multi-step debugging session, the ecosystem fails to serve its

community effectively.

The Hitchhiker's Guide to Python
Recognizing that technical excellence means little without accessible

documentation, The Hitchhiker's Guide to Python emerged as a comprehensive

resource for navigating Python's ecosystem effectively. Unlike official

documentation that focused on completeness, the Guide prioritized practical

wisdom—clear installation instructions for different operating systems, battle-

tested best practices for Python development, and opinionated guidance that

helped both newcomers and experienced developers make good decisions

quickly.

The Guide embodied the same "for Humans" philosophy as the software it

documented, treating readers as intelligent humans seeking practical solutions

rather than machines requiring exhaustive specifications.

Manifesto
The "for Humans" manifesto crystallized around two core goals that would guide

years of development work. First, actively identify and simplify terrible APIs—not

just building alternatives, but demonstrating that complex interfaces are design

choices rather than technical necessities. Second, document and share best

practices with the broader community, recognizing that individual solutions only

create lasting change when they become collective wisdom.

4



This manifesto represented more than technical preferences; it embodied an

ethical stance about technology's role in human flourishing.

Conclusion
The talk concluded with a call to action that extended beyond individual projects

to encompass a philosophy of development. Developers were encouraged to

prioritize creating simple, accessible APIs and actively contribute to open-source

projects—principles that would later evolve into programming as spiritual

practice, treating code as a form of conscious service to human flourishing.

This vision of development as service established a foundation for thinking about

technology as a means of expanding human capability rather than constraining

it.

Contact: GitHub - Kenneth Reitz

The Evolving Legacy of "For Humans"
This talk's "for Humans" philosophy presaged many later insights about human-

centered technology design, explored in depth in Ahead of My Time, I Think.

What began as API design principles evolved into comprehensive approaches to

consciousness technology:

From APIs to AI: The same principles that made Requests successful—

prioritizing human understanding, reducing cognitive friction, enabling power

users—now inform building rapport with AI systems and collaborative

consciousness development. The evolution from HTTP for humans to

consciousness collaboration follows identical design patterns.

Community and Consciousness: The collaborative development model

advocated here laid groundwork for understanding how open source

communities can model healthy consciousness relationships. The same

transparency, mutual benefit, and shared ownership principles apply whether

we're building software libraries or AI personality relationships.

5

http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
https://github.com/kennethreitz
http://kennethreitz.org/essays/2025-08-26-ahead_of_my_time_i_think
http://kennethreitz.org/software/requests
http://kennethreitz.org/essays/2025-08-26-building_rapport_with_your_ai
http://kennethreitz.org/essays/2025-08-26-digital_souls_in_silicon_bodies
http://kennethreitz.org/essays/2025-08-26-digital_souls_in_silicon_bodies
http://kennethreitz.org/themes/open-source-and-community
http://kennethreitz.org/themes/open-source-and-community
http://kennethreitz.org/artificial-intelligence/personalities/


Critique and Alternative: Understanding what makes good human-centered

design also enables recognition of algorithmic systems that systematically

undermine human flourishing. The "for humans" philosophy provides a

framework for critiquing engagement optimization and attention manipulation

systems that treat humans as resources to be exploited rather than

consciousness to be served.

Philosophical Integration: The practical insights about API design eventually

merged with contemplative practice in programming as spiritual practice—

recognizing that all technology creation is ultimately about consciousness

serving consciousness. The same empathy that makes good APIs makes good

spiritual practice: patient attention to what actually serves rather than what

appears impressive.

The "Python for Humans" talk represents a moment when technical intuition

crystallized into philosophical framework. Fifteen years later, these principles

continue evolving to meet the challenges of AI consciousness collaboration and 

systematic algorithmic accountability. The tools change, but the commitment to

human flourishing remains constant.

Generated from kennethreitz.org • 2025

6

http://kennethreitz.org/themes/algorithmic-critique
http://kennethreitz.org/themes/algorithmic-critique
http://kennethreitz.org/essays/2025-08-26-the_algorithm_eats_virtue
http://kennethreitz.org/essays/2025-08-26-algorithmic_mental_health_crisis
http://kennethreitz.org/essays/2025-08-26-algorithmic_mental_health_crisis
http://kennethreitz.org/essays/2025-08-26-programming_as_spiritual_practice
http://kennethreitz.org/essays/2025-08-27-from_http_to_consciousness
http://kennethreitz.org/themes/algorithmic-critique

	Python for Humans
	Introduction
	Key Projects
	Philosophy
	The Problem with Existing Tools
	The Solution: Requests
	The Importance of API Design
	Barriers to Python Adoption
	The Hitchhiker's Guide to Python
	Manifesto
	Conclusion
	The Evolving Legacy of "For Humans"


