
Python, Requests, & The
Standard Library
2013

3 min read • 633 words

Themes: Technology

Introduction
This presentation examined a critical question facing the Python community:

whether the wildly popular Requests library should be included in Python's

standard library. The discussion explored both the implications and reasoning

behind this consequential decision, weighing the benefits of official inclusion

against the risks of losing the agility that made Requests successful in the first

place.

Requests Overview
Requests had established itself as the gold standard for HTTP interactions in

Python by prioritizing security and thoughtful design above all else. The library

featured optimized interfaces that made best practices in SSL, connection

pooling, encoding, and headers accessible to everyday developers, dramatically

simplifying interaction with web services compared to the standard library's

complex urllib2.

1

The numbers spoke to its impact: Requests had become the most downloaded

Python package, with approximately 42 million downloads from PyPI. This

unprecedented adoption led to regular suggestions from the community for its

inclusion in the standard library—a proposal that seemed both obvious and

fraught with complications.

Arguments for Inclusion
The case for including Requests in the standard library rested on several

compelling arguments. From a social responsibility perspective, inclusion

seemed like simply "the right thing to do"—given Requests' critical role in the

Python ecosystem, why shouldn't every Python installation include this essential

functionality?

Sustainability concerns also favored inclusion. Standard library status could

facilitate funding for core contributors, ensuring the project's long-term viability

without relying solely on volunteer effort. The ecosystem benefits would extend

beyond Requests itself—Chardet, a key dependency, emerged as a particularly

strong candidate for standard library inclusion due to its universal utility in

character encoding detection.

The argument for standard library inclusion gained additional weight from Python's adoption
of ensurepip, which demonstrated the language's willingness to embrace widely-used third-
party tools as core infrastructure.

Arguments Against Inclusion
However, equally compelling arguments emerged against standard library

inclusion. The independence argument struck at the heart of what made

Requests valuable: its superiority over the standard library stemmed from its

ability to innovate freely and respond quickly to security incidents or

specification changes. Standard library inclusion could paradoxically diminish

the very agility that created its excellence.

This argument proved prescient. The debate over Requests' standard library inclusion
highlighted fundamental questions about Python's development philosophy and the role of
third-party packages in a language ecosystem.

2

The flexibility concerns extended beyond philosophical considerations to

practical development realities. Standard library inclusion would fundamentally

limit the project's ability to release updates and improvements promptly,

potentially slowing the very innovation cycles that kept Python's HTTP

capabilities at the forefront of web development.

Broader Questions
The Requests debate illuminated deeper questions about Python's evolving

ecosystem. What should the goals of the standard library be in an era where

tools like ensurepip made package installation increasingly seamless? The

traditional argument for standard library inclusion—ensuring universal

availability—seemed less compelling when package management had become so

straightforward.

This led to fundamental questions about critical infrastructure. While Requests

undoubtedly qualified as critical infrastructure for the Python community,

standard library inclusion might paradoxically make it less adaptable to the

rapid changes that characterize modern web development. The tension between

stability and innovation had no easy resolution.

Conclusion
After weighing all considerations, the presentation ultimately argued against

including Requests in the standard library. The decision emphasized that the

project's greatest value to the Python community lay in its ability to remain agile

and independent—qualities that would be compromised by standard library

inclusion.

This stance reflected a mature understanding of software ecosystems: sometimes

the most responsible choice is to resist the apparent honor of official inclusion in

favor of maintaining the flexibility that created value in the first place. Requests

would continue serving the Python community most effectively by remaining

outside the standard library, free to evolve at the pace of web technology rather

than the necessarily more conservative pace of language development.

3

Generated from kennethreitz.org • 2025

4

	Python, Requests, & The Standard Library
	Introduction
	Requests Overview
	Arguments for Inclusion
	Arguments Against Inclusion
	Broader Questions
	Conclusion

