
Responder: a Familar HTTP
Service Framework
2018 

2 min read • 414 words 

Themes: Human Centered

Introduction
Responder was introduced as a modern HTTP service framework for Python

that drew inspiration from the rich history of Python web development while

aiming to innovate and dramatically simplify the web development experience.

This framework represented both an evolution of existing patterns and a fresh

perspective on what Python web development could become in the modern era.

Historical Context
The presentation traced Python's web development evolution from its earliest

days. In 1999, Zope and Plone established Python as a viable web development

platform, particularly in government sectors where Python's clarity proved

valuable. The 2003 introduction of WSGI created a crucial standardization

moment. 

WSGI (Web Server Gateway Interface) standardized the interface between Python web
applications and web servers, enabling interoperability and the ecosystem of middleware we
see today.

1



Key frameworks emerged in rapid succession: Django (2005) as a

comprehensive framework for content applications, Pylons (2006) with a

component-oriented approach, and Pyramid (2007) as a balanced alternative.

Flask deserves special recognition for its unique origin and impact. 

Armin Ronacher's April Fool's joke in 2010 became one of the most influential Python web
frameworks, demonstrating how simplicity and good design can triumph over comprehensive
feature sets.

Initially an April Fool's joke, Flask's elegant simplicity and intuitive API made it

extraordinarily popular—developers could often guess correct usage patterns

without consulting documentation.

The Future: Responder
Responder's vision positioned it as a future-forward framework for 2019 and

beyond, designed to address modern web development requirements including

WebSockets, Server-Sent Events (SSE), and ASGI support. 

ASGI (Asynchronous Server Gateway Interface) represents the evolution beyond WSGI,
enabling support for WebSockets, HTTP/2, and other modern protocols that require
asynchronous handling.

The design philosophy embodied Kenneth's "for Humans" approach by

including Requests as the standard HTTP client and modeling Request/

Response objects after Requests' beloved interface patterns. This ensured

immediate familiarity for developers already using Requests.

The ambitious goal was explicitly stated: create "the world's best web

framework." This represented a serious commitment to excellence, serving as

both community interest gauge and platform for cutting-edge web development

patterns.

2



Conclusion
Responder represented an ambitious synthesis of Python web development's

rich history with a clear vision for its future. By building on proven strengths

while introducing innovative, user-friendly features, the project aimed to provide

Python developers with a robust, modern tool maintaining the community's core

values of simplicity and practicality.

This framework embodied the evolutionary approach characterizing Kenneth's

broader work: respect for the past, clear assessment of current limitations, and

bold innovation toward a more human-centered future.

Generated from kennethreitz.org • 2025

3


	Responder: a Familar HTTP Service Framework
	Introduction
	Historical Context
	The Future: Responder
	Conclusion


